

6790 N. West Avenue Fresno, California 93711 Tel: 559.448.8051 Fax: 559.446.1765

www.dardenarchitects.com

### ADDENDUM NO.04

DATE: 11/04/21

### **PROJECT:**

'Matilda Torres High School, Toros Stadium' Matilda Torres High School 16645 Road 26. Madera, CA 93638

### **OWNER:**

Madera Unified School District 1902 Howard Road Madera, CA 93637-5123

### **ARCHITECT:**

DARDEN ARCHITECTS, INC. Attention: Matthew Heiss 6790 N. West Avenue Fresno, California 93711

- T. (559) 448-8051
- F. (559) 446-1765

DARDEN PROJECT NO. 0622.4 DSA File Nos. 10-C3 DSA APPL. NO. 02-118396

It will be the responsibility of the General Contractor to submit the information contained in this addendum to all its subcontractors and suppliers. Acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may subject Bidder to disqualification.

The following additions, deletions, and revisions to the SHEETS and Project Manual are hereby made and do become a part of these Contract Documents.

### A R C H I T E C T U R E P L A N N I N G I N T E R I O R S

Robert L. Petithomme <sup>AIA LEED' AP</sup> Antonio J. Avila <sup>AIA LEED' AP BD+C</sup> DeDe Darnell <sup>ASID IIDA LEED' AP</sup>

Grant E. Dodson AIA Michael K. Fennacy AIA Andrew Corral<sup>AIA LEED'AP</sup> Gerardo Padron Leslie Rau<sup>IIDA LEED<sup>\*</sup> AP Martin A. Ilić</sup> Matthew Heiss AIA Michael J. Nelson Sean P. Mendoza AIA William Brandle AIA

## **INDEX OF ADDENDA TRANSMITTED HEREWITH**

### **PROJECT MANUAL:**

### **SPECIFICATIONS:**

### SHEETS:

### **CHANGES TO SHEETS:**

LANDSCAPE...... AD4-L01

### **ATTACHMENTS:**

| DOCUMENTS OR SPECIFICATIONS: |                                        |  |  |  |
|------------------------------|----------------------------------------|--|--|--|
| 00495                        | IRAN CONTRACTING ACT CERTIFICATION     |  |  |  |
| AD3-ID-5                     | Revised Interiors exhibit Appendix B.2 |  |  |  |
| PRE-BID RFI LOG              |                                        |  |  |  |

### SHEETS:

N/A

### **PROJECT MANUAL:**

### **SPECIFICATIONS:**

### CHANGES TO SPECIFICATIONS:

### AD4-SP01 Refer to Specification Section FRONT END DOCUMENTS 000000

1. Insert attached Document "Iran Contracting Act Certification" to Front end Documents as indicated in table of contents

### AD4-SP02 Refer to specification Section 130034 OUTDOOR BLEACHERS

1. See Part 2, Item 2.1, Paragraph A, Subitem 1. "Specified Product Manufacturer"

#### a. Add Subitem 2 to specification as follows:

2. Approved alternate manufacturers:
a. STURDISTEEL INC.
1) Outdoor Bleachers (Grandstands)
2) Press Box

### AD4-SP03 See section 033000 CAST IN PLACE CONCRETE

#### 1.Refer to Part 2, Section 2.4, A, 6, b.

a. Revise item 1) to read 3,500 psi in 28 days.

#### AD4-SP04 See Appendix B.2 ID Sheets

#### 1. Replace Sheet ID-5 with attached exhibit AD3-ID5

a. Schluter Strip requirements at outside corner transitions clarified.

#### **CHANGES TO DRAWINGS:**

#### LANDSCAPE:

#### AD4-L01 Refer to Sheet SD/L200

Revise tag in Upper left corner for Dietes Bicolor to read "1g"

 All Dietes Bicolor shrubs to be 1 gal size.

### PRE BID RFI LOG

HCCI Pred Bid RFI – 001 thru 013 AMG pre bid RFI-001 thru 006 AC RFI-01 thru 04 Avidex RFI 1 thru 3 Marina Landscape RFI #1 Bedards Pre bid RFI#01

See attached Log for responses

END OF ADDENDUM NO. 04

### DOCUMENT 00495 IRAN CONTARACTING ACT CERTIFICATION

(TO BE EXECUTED AND SUBMITTED WITH BID) Public Contract Code Sections 2202-2208

Pursuant to Public Contract Code 2204.(a) A public entity shall require a person that is submits a bid or proposal to, or otherwise proposes to enter into or renew a contract with, a public entity with respect t a contract for goods or services of one million dollars (\$1,000,000) or ore to certify, at the time the bid is submitted or the contract is renewed, that the person is not identified on a list created pursuant to subdivision (b) of Section 2203 as a person engaging in investment activities in Iran described in subdivision (a) of Section 2202.5 or as a person described in subdivision 9b) of Section 2202.5, as applicable.

To comply with this requirement, please insert your company/entity and Federal ID number (if available) and complete <u>one</u> of the options below. Please note, California law established penalties for providing false certifications, including civil penalties equal to the greater of \$250,000 or twice the amount of the contract for which the false certification was made, contract termination and three-year ineligibility to bid on contract in accordance with Public Contract Code section 2205.

#### **OPTION No.1 – CERTIFICATION**

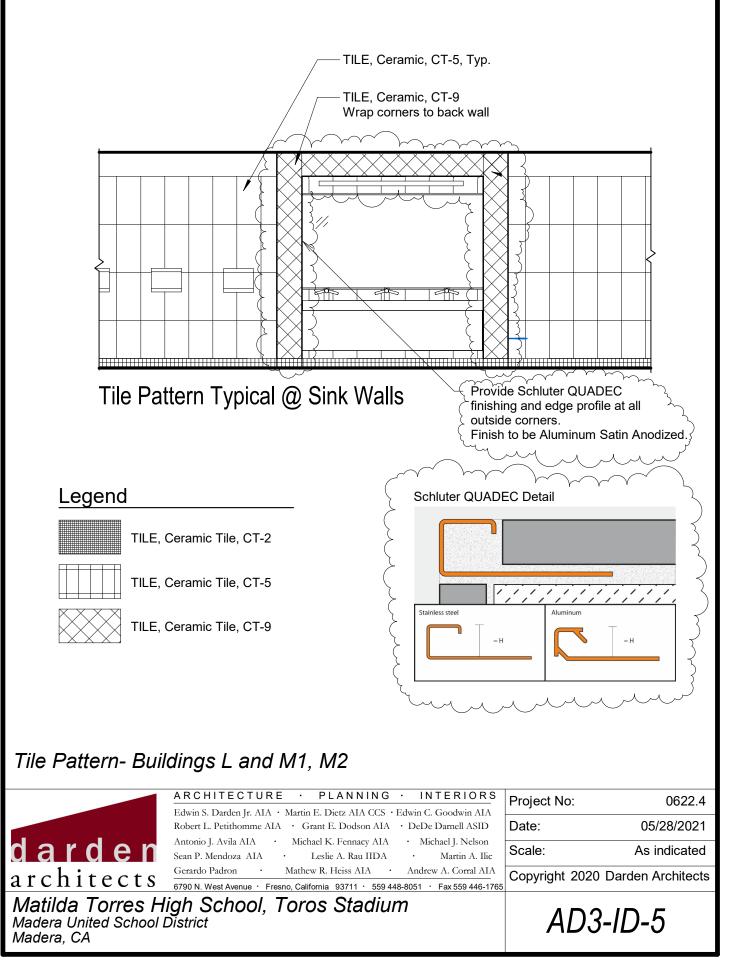
I, the official named below, certify I am duly authorized to execute this certification on behalf of the company/entity identified below, and the company/entity identified below is not on the current list of persons engaged in investment activities in Iran created by DGS and is not a financial institution extending twenty million dollars (\$20,000,000) or more in credit to another person or entity, for 45 days or more, if that other person or company/entity will use the credit to provide goods or services in the energy sector in Iran and is identified on the current list of persons engaged in investment activities in Iran created by DGS in accordance with subdivision (b) of Public Contract Code 2203

| Company Name/Financial Institution (printed) |                           | Federal ID Number (or n/a) |    |
|----------------------------------------------|---------------------------|----------------------------|----|
| By (Authorized Signature)                    |                           |                            |    |
| Printed Name & Title of Person Signing       |                           |                            |    |
| Date Executed                                | Executed in the County of |                            | in |
|                                              | The State of              |                            |    |

#### **OPTION No.2 – EXEMPTION**

Pursuant to Public Contract Code sections 2203(c) and (d), a public entity may permit a vendor/financial institution engaged in investment activities in Iran, on a case-by-case basis, to be eligible for, or to bid on, submit a proposal for, or enters into or renews, a contract for goods and services

If you have obtained an exemption from the certification requirement under the Iran Contracting Act, please fill out the information below and attach documentation demonstrating the exemption approval.


Vendor Name/Financial Institution (Printed)

Federal ID Number (or n/a)

By (Authorized Signature)

Printed Name & Title of Person Signing

Date Executed



Darden Architects, Inc.

6790 North West Avenue Fresno, California 93711 Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

Attn: Matt Heiss

To:

**INFORMATION REQUESTED:** 

Notice to Bidders states a bid time of 10am. Typical industry standard for this area is a 2-3pm bid time. Would it be possible to modify this time to 2pm? Sometimes portions of the sub market don't catch in the documents the 10am time and don't get their bids in for the GC's to use. This reduces the amount of sub competition and as a result can drive the cost higher than it needed to be. Please advise.

| Cost Impact: None:     |      | Signature:             |                 |  |
|------------------------|------|------------------------|-----------------|--|
| Schedule Impact: None: | Days |                        | Pages Attached: |  |
| Trade/Contractor:      |      | Schedule Task No/Item: |                 |  |

The Work shall be carried out in accordance with the following supplemental instructions issued in accordance with the Contract Documents without change in the Contract Sum or Contract Time. Proceeding with the Work in accordance with these instructions indicates your acknowledgement that there will be no change in the Contract Sum or Contract Time.

If the Contractor considers that this supplemental instruction requires a change in the Contract Sum or Contract Time, the Contractor shall not proceed with this Work and shall promptly submit an itemized proposal to the Architect for doing this work. If your proposal is found to be satisfactory and in order, this supplemental instruction will be superseded by a Construction Change Directive.

#### Refered To:

Refered Date:

Return Date:

### SUPPLEMENTAL INSTRUCTIONS:

The District has agreed to adjust Bid due time to 2:00 PM. See clarifications and updated requirements in forthcoming addenda 3.

| Consultant's Signature:                      | A     | rchitect's | Signatur | e: att           | tor trips       |
|----------------------------------------------|-------|------------|----------|------------------|-----------------|
| Date:                                        |       |            | Date     | e <u>10/29/2</u> | 2021            |
| Copy: Owner Inspector Testing Lab Structural | Mech. | Elec       | File     | Other            | Pages Attached: |

# RFI No.: HCCI#001

1

RFI No.: HCCI#002

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

**INFORMATION REQUESTED** Structural Steel Fabrication Testing Lab Back Charges Spec Section 051200 2.6B regarding location of structural steel shop inspections only mentions per diem and other contractor charges should the fabrication location be over 75 miles from the project site. Please provide a breakdown of what these charges will be per day.

Additionally, please advise what, if any, backcharges for shop inspection will be assessed should a steel contractor decide to run the fabrication plant in shifts? This response should include hourly rates and any other charges that the district would backcharge to the contractor. District should be advised that this is a distinct possibility given the schedule and current market conditions for the procurement of material.

Off-site inspection work hours over 8 hours in a given day, work that begins or ends outside normal working hours (normal working hours are 7:00 AM to 6:00 PM), work that starts or ends during Second Shift work hours (work that commences after 2:00 PM or before 4:00 AM during any twenty-four (24) hour period commencing at 12:01 AM), and on Saturdays will be billed at 1.5 times the applicable inspection rate. Off-site inspection work hours in excess of 12 hours per day, Second Shift or Saturday work hours in excess of 8 hours per day, and work on Sundays/Holidays will be billed at 2.0 times the applicable inspection rate.

Regular normal working hour rates are as follows: 1) rebar sampling/tagging is \$55/hour; 2) CMU block sampling/tagging is \$55/hour; 3) shop welding inspection is \$55/hour; 4) shop non-destructive testing (NDT) is \$105/hour. Salem charges a two-hour minimum and increment for all inspections.

In addition to applicable inspection rate increases, off-site inspections in excess of 50 miles from our Fresno Salem office will be assessed as: 1) fuel charges of \$0.35/mile; 2) travel time fees at \$55/hour of travel; 3) airfare costs including travel insurance; 4) daily per diem (food and sustenance) of \$41.50/overnight stay (including weekends); 5) hotel costs per overnight stay (including weekends) with contractor to assess fees in locale; 6) daily rental car fees per overnight stay (including weekends) with contractor to assess fees in locale. Actual incurred charges will be billed to the client for airfare, hotel, and rental car fees, which will be subject to 15% markup.

| Consultant's Signature:                      |      | Architect's | Signatur | att    | the topiso      | _ |
|----------------------------------------------|------|-------------|----------|--------|-----------------|---|
| Date:                                        |      |             | Date     | 11/4/2 | 2021            | - |
| Copy: Owner Inspector Testing Lab Structural | Mech | n.          | File     | Other  | Pages Attached: | • |

1

### Date: 10.18.2021 To: Darden Architects, Inc. **Respond By:** 6790 North West Avenue Fresno, California 93711 Architect Project No. Project: MTHS Stadium INFORMATION REQUESTED: 2% Steel Allowance General Note#8 on G/S101 states for the GC to carry a 2% allowance on the cost of the structural/Misc. Steel, and Reinforcing Steel to be used at the discretion of the SEOR. Please confirm it is desired for the GC's to carry this 2% allowance in the bid. Would it be possible to simply increase the already required \$675K allowance to include this 2%. Cost Impact: Signature: None: Schedule Impact: None: Days Pages Attached: Trade/Contractor: Schedule Task No/Item: The Work shall be carried out in accordance with the following supplemental instructions issued in accordance with the Contract Documents without change in the Contract Sum or Contract Time. Proceeding with the Work in accordance with these instructions indicates your acknowledgement that there will be no change in the Contract Sum or Contract Time. If the Contractor considers that this supplemental instruction requires a change in the Contract Sum or Contract Time, the Contractor shall not proceed with this Work and shall promptly submit an itemized proposal to the Architect for doing this work. If your proposal is found to be satisfactory and in order, this supplemental instruction will be superseded by a Construction Change Directive. Refered To: Refered Date: Return Date: SUPPLEMENTAL INSTRUCTIONS: Contractor to provide 2% allowance on the cost of the structural misc. and reinforcing steel as indicated on sheet G/S101 note #8. Owners 675,000 dollar allowance and 2% steel allowance are to be held separately as individual line items. Do not combine. Consultant's Signature: Architect's Signature: 10/29/21 Date: Date Copy: Owner Inspector Testing Lab Structural Mech. Elec File Other Pages Attached: 01 32 26.04

# **REQUEST FOR INFORMATION**

### RFI No.: HCCI#003

1

Attn: Matt Heiss

| Cost Impact: None:                                                                                                                    |                            | Signature:                     |                   |                           |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|-------------------|---------------------------|
| Schedule Impact: None:                                                                                                                | Days                       |                                | Pages             | Attached:                 |
| Trade/Contractor:                                                                                                                     | Sch                        | edule Task No/Item:            |                   | 44, #440.0000 a           |
| The Work shall be carried out in accorda<br>Documents without change in the Contra<br>Indicates your acknowledgement that the         | ct Sum or Contract Time.   | Proceeding with the Work i     | in accordance v   |                           |
| If the Contractor considers that this supp<br>shall not proceed with this Work and sha<br>found to be satisfactory and in order, this | Il promptly submit an iten | nized proposal to the Architer | ct for doing this | work. If your proposal is |
| Refered To:                                                                                                                           |                            | Refered Date:                  | Retur             | n Date:                   |
| SUPPLEMENTAL INSTRU                                                                                                                   | CTIONS:                    |                                |                   |                           |
|                                                                                                                                       |                            |                                | 1                 |                           |
| Consultant's Signature:                                                                                                               |                            | Architect's Signatur           |                   | no talizo                 |
|                                                                                                                                       |                            |                                |                   |                           |
| Copy: Owner Inspector Testir                                                                                                          | IG LAD USTRUCTURAL         | Mech. Elec File                | Other             | Pages Attached:           |
|                                                                                                                                       |                            |                                |                   |                           |
|                                                                                                                                       |                            |                                |                   |                           |

RFI No.: HCCI#004

6790 North West Avenue Fresno, California 93711 Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

### Attn: Matt Heiss

### INFORMATION REQUESTED: Concrete FF & FL Testing

Concrete Specification 033000 requires that the GC pays for FF & FL testing of the newly poured slabs. Please confirm this requirement, it would seem this should be covered in the scope of services to be performed by the Testing lab already employed by the school district.

RFI No.: HCCI#005

To: Darden Architects, Inc. 6790 North West Avenue

Fresno, California 93711

Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

Attn: Matt Heiss

### INFORMATION REQUESTED: Air Entrained Concrete

Concrete Specification 033000 notes that SOG is to be 4000PSI concrete with 6% air. This would require the use of an air entrainment additive. The use of the additives on troweled finishes greatly increases the risk of delamination. Please advise if the 6% air entrainment requirement can be removed?

Secondly, the concrete spec also states that SOMD should be 110PCF +/-3PCF with a 4-7& air entrainment. Mixes are available that are 115-116PCF and do not require air entrainment. For the same reason noted above would a mix that is 115-116PCF with no air entrainment be acceptable?

#### **BUEHLER RESPONSE**

1. THE STRUCTURAL DRAWINGS INDICATE THAT SOG SHOULD BE NORMAL WEIGHT CONCRETE WITH F'C = 3500 PSI AT 28 DAYS. AIR ENTRAINMENT FOR THE SOG MIX DESIGN IS NOT REQUIRED. THE SPECIFICATIONS WILL BE REVISED TO AGREE WITH THE APPROVED STRUCTURAL DRAWINGS.

2. FOR SLAB OVER METAL DECK (SOMD) IT IS OUR INDERSTANDING THAT THE DENSITY CURRENTLY SPECIFIED (110 PCF +/- 3 PCF) FOR BUILDING Q IS CRITICAL FOR ACHIEVING THE REQUIRED FIRE RATING. ARCHITECT TO REVIEW AND RESPOND.

| TIM KELLY                 | SE                      | BUEHLER ENGINEERING               | NOV 2, 2021     |
|---------------------------|-------------------------|-----------------------------------|-----------------|
| 1. Provide SOME<br>plans. | ) mix designs as sj     | pecified in section 033000 and as | indicated on    |
| Consultant's Signature    | ·                       | Architect's Signature:            | to takiso       |
| Date                      |                         | Date                              |                 |
|                           | ctor Testing Lab TStruc |                                   | Pages Attached: |

RFI No.: HCCI#006

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

### INFORMATION REQUESTED: Dugout Benches

Please provide a specification for the dugout benches. The detail on A/SDX101 does not list a manufacturer or model. If this is supposed to be Misc. Steel fabricated item what is the plank material to be made from?

**RESPONSE**:

Dugout benches are a custom fabricated item. See clarification of bench detail in forthcoming addenda #3

| Consultant's Signature:                   | Architect's Signature:                     |
|-------------------------------------------|--------------------------------------------|
| Date:                                     | Date <u>10/29/21</u>                       |
| Copy: Owner Inspector Testing Lab Structu | ural Mech. Elec File Other Pages Attached: |

RFI No.: HCCI#007

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

### INFORMATION REQUESTED: Subcontractor Listings

Please confirm that only the following information is to be provided on bid day as required by public contract code: 1. Company Name 2. Location of Business (City/State only) 3. Type of Work or Trade 4. CSLB# (No Exp Date) 5. DIR# (No Exp Date) 9. DIR# (No Exp Date) Please confirm that all other requested information on the Designation of subcontractors can be provided within 24 hours of bid opening.

### **RESPONSE:**

Subcontractor Listings Form shall include company name and type of work/trade for each subcontractor required to be listed. All remaining information requested on the subcontractor listing form may be submitted within 24 hours of the bid due date/time

| Consultant's Signature:                      | Architect's Signature:                |  |  |  |
|----------------------------------------------|---------------------------------------|--|--|--|
| Date:                                        | Date <u>11/4/2021</u>                 |  |  |  |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |  |  |  |

RFI No.: HCCI#008

To: Darden Architects, Inc. 6790 North West Avenue

Fresno, California 93711

Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

Attn: Matt Heiss

Project: MTHS Stadium

INFORMATION REQUESTED: Bid Day Required Items

Please confirm that only the following is to be turned in on bid day:

- 1. Completed Bid Form
- 2. Prime Point of Contact
- 3. Contractor's Certificate Regarding Workers Compensation
- 4. Bid Bond
- 5. Designation of Subcontractors
- 6. Information Required of Bidders
- 7. Asbestos Free Materials Certification
- 8. Recycled Content Certification
- 9. Drugfree Workplace Certification
- 10. Certificate Regarding Alcoholic Beverage and Tobacco Free Campus Policy
- 11. Public Works Contractor Registration Certification
- 12. Non-Collusion Declaration

and All other forms can be completed once the bid is successful.

•HCCI #8 – All items listed in RFI #8 are due at time of bid turn-in.

Also required are:

The Iran Contracting Act Certification, fully executed – please see attached.

The Contractor and Subcontractor Fingerprinting Requirements form – see response to AMG RFI #1

Insurance certificates, payment and performance bonds will be executed/provided by the successful bidder after award.

| Consultant's Signature:                      | Architect's Signature:                |
|----------------------------------------------|---------------------------------------|
| Date:                                        | Date11/4/2021                         |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |

### DOCUMENT 00495 IRAN CONTARACTING ACT CERTIFICATION

(TO BE EXECUTED AND SUBMITTED WITH BID) Public Contract Code Sections 2202-2208

Pursuant to Public Contract Code 2204.(a) A public entity shall require a person that is submits a bid or proposal to, or otherwise proposes to enter into or renew a contract with, a public entity with respect t a contract for goods or services of one million dollars (\$1,000,000) or ore to certify, at the time the bid is submitted or the contract is renewed, that the person is not identified on a list created pursuant to subdivision (b) of Section 2203 as a person engaging in investment activities in Iran described in subdivision (a) of Section 2202.5 or as a person described in subdivision 9b) of Section 2202.5, as applicable.

To comply with this requirement, please insert your company/entity and Federal ID number (if available) and complete <u>one</u> of the options below. Please note, California law established penalties for providing false certifications, including civil penalties equal to the greater of \$250,000 or twice the amount of the contract for which the false certification was made, contract termination and three-year ineligibility to bid on contract in accordance with Public Contract Code section 2205.

#### **OPTION No.1 – CERTIFICATION**

I, the official named below, certify I am duly authorized to execute this certification on behalf of the company/entity identified below, and the company/entity identified below is not on the current list of persons engaged in investment activities in Iran created by DGS and is not a financial institution extending twenty million dollars (\$20,000,000) or more in credit to another person or entity, for 45 days or more, if that other person or company/entity will use the credit to provide goods or services in the energy sector in Iran and is identified on the current list of persons engaged in investment activities in Iran created by DGS in accordance with subdivision (b) of Public Contract Code 2203

| Company Name/Financial Institution (printed) |                           | Federal ID Number (or n/a) |    |
|----------------------------------------------|---------------------------|----------------------------|----|
| By (Authorized Signature)                    |                           |                            |    |
| Printed Name & Title of Person Signing       |                           |                            |    |
| Date Executed                                | Executed in the County of |                            | in |
|                                              | The State of              |                            |    |

#### **OPTION No.2 – EXEMPTION**

Pursuant to Public Contract Code sections 2203(c) and (d), a public entity may permit a vendor/financial institution engaged in investment activities in Iran, on a case-by-case basis, to be eligible for, or to bid on, submit a proposal for, or enters into or renews, a contract for goods and services

If you have obtained an exemption from the certification requirement under the Iran Contracting Act, please fill out the information below and attach documentation demonstrating the exemption approval.

Vendor Name/Financial Institution (Printed)

Federal ID Number (or n/a)

By (Authorized Signature)

Printed Name & Title of Person Signing

Date Executed

RFI No.: HCCI#009

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

# INFORMATION REQUESTED: Temporary Utilities

Please provide location(s) for connection to utilities for temporary use during construction, specifically power and water. Would it be possible for the district to allow the contractor to connect to the electrical service of the school without separate metering. Often time this process with PG&E is not practical given the relatively short duration of the project. GC's typically build the cost for PG&E into the job cost so the district still indirectly pays these costs.

•HCCI #9 – Contractor may connect to Main Campus switch. (2) 800 amp switches, (4) 400 amp switches (8) 225 amp switches, (2) 400 amp 3 phase and (2) 100 amp 3 phase are available (see attached location). Contractor shall be responsible for all means (labor and materials) of providing power to the jobsite from the power source however, they shall not include temporary power (PG&E) costs in their bid.

Jobsite water shall be obtained from fire hydrants using a meter obtained from the City of Madera. Contractor is responsible for all fees for water use. Construction restroom facilities shall be self-contained and supplied with water as needed by the Contractor's temporary restroom vendor.

| Consultant's Signature:                      | Architect's Signature:                |  |  |  |
|----------------------------------------------|---------------------------------------|--|--|--|
| Date:                                        | Date11/4/21                           |  |  |  |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |  |  |  |

RFI No.: HCCI#010

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.18.2021 Respond By:

Architect Project No. Project: MTHS Stadium

INFORMATION REQUESTED: SWPPP Development

Please confirm it will be the responsibility of the GC to prepare the SWPPP plan for this project? Typically the District provides the plan and the GC implements and inspects.

**RESPONSE**:

General contractor to provide and execute SWPPP as indicated in spec section 015723

| Consultant's Signature:                      | Architect's Signature:                |
|----------------------------------------------|---------------------------------------|
| Date:                                        | Date0/29/2021                         |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |

1

RFI No.: HCCI#011

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.19.2021 Respond By:

Architect Project No. Project: MTHS Stadium

INFORMATION REQUESTED: Soils Report

Please provide a copy of the Geotechnical Investigation for this project.

RESPONSE: See attached Geo technical report as requested

| Consultant's Signature:                      | Architect's Signature:                |  |  |
|----------------------------------------------|---------------------------------------|--|--|
| Date:                                        | Date 10/29/21                         |  |  |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |  |  |



# GEOTECHNICAL INVESTIGATION REPORT AND GEOLOGIC AND SEISMIC HAZARDS ASSESSMENT

# **TOROS STADIUM – MATILDA TORRES HS**

BSK PROJECT NO. G20-170-11F

**PREPARED FOR:** 

MADERA UNIFIED SCHOOL DISTRICT 1902 HOWARD ROAD MADERA, CALIFORNIA 93637

SEPTEMBER 4, 2020



550 West Locust Avenue Fresno CA 93650 P 559.497.2880 F 559.497.2886 www.bskassociates.com

September 4, 2020

BSK Project Number G20-170-11F

Ms. Rosalind Cox Madera Unified School District 1902 Howard Road Madera, California 93637

Subject: Geotechnical Engineering Investigation and Geologic/Seismic Hazards Evaluation Proposed Toros Stadium Matilda Torres High School 1902 Howard Road, Madera, California

Dear Ms. Cox:

We are pleased to submit our geotechnical investigation report, and geologic and seismic hazards assessment for the proposed Toros Stadium at the Matilda Torres High School within the Madera Unified School District in Madera, California. The enclosed report presents our geotechnical engineering recommendations for the proposed improvements and our geologic and seismic hazards assessment included as Appendix C of this report.

Conclusions and recommendations presented in the enclosed report are based on our site investigation and laboratory testing program. Consequently, variations between anticipated and actual subsurface soil conditions may be found in localized areas during construction. If significant variation in the subsurface conditions is encountered during construction, BSK should review the recommendations presented herein and provide supplemental recommendations, if necessary.

Respectfully Submitted, BSK Associates, Inc.



Environmental, Geotechnical, Construction Services, Analytical Testing - An Employee-Owned Company

# **Table of Contents**

| 1. |                                                 | INT | TROD   | PUCTION                                           | 1    |
|----|-------------------------------------------------|-----|--------|---------------------------------------------------|------|
|    | 1.1                                             |     | Proje  | ect Description                                   | 1    |
| 2. |                                                 | SIT | E IN   | /ESTIGATION                                       | 2    |
|    | 2.1 Field Exploration                           |     |        | 2                                                 |      |
|    | 2.2                                             |     | Labo   | ratory Testing                                    | 2    |
| 3. |                                                 | SIT | E CO   | NDITIONS                                          | 3    |
|    | 3.1                                             |     | Site   | Description                                       | 3    |
|    | 3.2                                             |     | Subs   | urface Conditions                                 | 3    |
| 4. |                                                 | со  | NCLU   | JSIONS AND RECOMMENDATIONS                        | 3    |
|    | 4.1                                             |     | Gene   | eral                                              | 3    |
|    | 4.2 Site Preparation and Earthwork Construction |     |        |                                                   | 3    |
|    | 4.3                                             |     | Four   | dations                                           | 5    |
|    |                                                 | 4.3 | 3.1    | Shallow Footings                                  | 5    |
|    |                                                 | 4.3 | 3.2    | Lateral Earth Pressures and Frictional Resistance | 6    |
|    |                                                 | 4.3 | 3.3    | Pole Type Foundations                             | 7    |
|    | 5.4                                             |     | Slabs  | s-on-Grade                                        | 8    |
|    | 5.5                                             |     | Exca   | vation Stability                                  | 9    |
|    | 5.6                                             |     | Utilit | y Trench Excavation and Backfill                  | 9    |
|    | 5.7 Site Drainage                               |     |        |                                                   |      |
|    | 5.8 Corrosivity Results                         |     |        |                                                   |      |
|    | 5.9                                             |     | Plan   | Review and Construction Observation               | . 11 |
| 6. |                                                 | AD  | DITIO  | ONAL SERVICES AND LIMITATIONS                     | . 11 |



## **Figures and Appendices**

### FIGURES

Figure 1 – Site Vicinity Map Figure 2 – Boring Location Map

### **APPENDIX A – Boring Logs**

Soil Classification Chart and Log Key Boring Logs

### **APPENDIX B – Laboratory Test Results**

Figure B-1 – Direct Shear Test Results

### **APPENDIX C – Geologic and Seismic Hazards Report**



### 1. INTRODUCTION

This report presents the results of our geotechnical engineering investigation conducted by BSK Associates (BSK), for the proposed Toros Stadium at Matilda Torres High School within the Madera Unified School District in Madera, California. The site school facility is located on the 16645 Road 26, in Madera, CA, as shown on Boring Location Map, Figure 2. The geotechnical engineering investigation was conducted in accordance with BSK Proposal GF20-20689, dated July 31, 2020 and the Site Plan prepared by Darden Architects, dated March 13, 2020. A previous geotechnical investigation was performed at the high school (BSK Project No. G16-159-11F, dated September 16, 2016).

This report provides a description of the geotechnical conditions at the Site and provides specific recommendations for earthwork and foundation design with respect to the proposed improvements. In the event that changes occur in the design of the project, this report's conclusions and recommendations will not be considered valid unless the changes are reviewed with BSK and the conclusions and recommendations are modified or verified in writing. Examples of such changes would include location, size of structures, foundation loads, etc.

### **1.1 Project Description**

We understand that this project consists of the design and construction of a new high school stadium at the Matilda Torres High School. The new stadium was reported to have plan areas as presented in Table 1. We assume the new stadium will be supported on conventional reinforced concrete foundations and slab-on-grade floors. Building design loads were not provided at the time this report was prepared, as such, we assume maximum wall and column loads are going to be less than 2 kips/ft and 30 kips, respectively. Other improvements are anticipated to include stadium seating, parking lots, main entrance gate, toilet building/snack bar, home control point, visitor control point, dual snack bar/restroom, field house and storage, scoreboard, underground utilities, hardscaping, and landscaping.

The following table summarizes the new proposed buildings and associated plan areas.

| Building Designation      | Approximate Plan Area (sf) |
|---------------------------|----------------------------|
| L-Entry / Concession      | 1,900                      |
| M1-Toilet / Snack Bar     | 2,300                      |
| M2-Toilet / Snack Bar     | 2,300                      |
| P-Team Room               | 2,500                      |
| Q-Maintenance / Team Room | 10,000                     |

### **Table 1: Summarized Developments**

Fill elevations are anticipated to be less than 2 feet above natural grade, to achieve level building pad and



positive site drainage.

### 1.2 Approach and Scope of Services

The purpose of this investigation was to explore and evaluate the subsurface conditions at the project Site in order to provide geotechnical input for the design and construction of the planned improvements for this project. The scope of services is to adhere to the requirements of the 2019 California Building Standards Code (California Code of Regulations, Title 24), which consisted of field exploration, laboratory testing, engineering analysis, and preparation of this report. A geologic and seismic hazards assessment for the project was also performed concurrently in order to comply with the guidelines established by the California Geological Survey (CGS) in Note 48 and is presented in Appendix C. Based upon the above project understanding, BSK proposes the following scope of services that will include field exploration, field and laboratory testing program, engineering analyses, and report preparation.

### 2. SITE INVESTIGATION

### 2.1 Field Exploration

Prior to the field exploration, a site reconnaissance was completed by a BSK representative to mark exploratory boring locations on August 11,2020.

The field exploration for this investigation was conducted under the oversight of a BSK staff member. A total of six (6) exploratory borings were drilled at the Site on August 24, 2020 using a truck-mounted mobile B-61 drill rig with hollow stem augers provided by Baja Drilling Exploration. The borings were drilled to a maximum depth of 20 feet beneath the existing ground surface (bgs). Borings from the previous investigation referenced were utilized for this investigation and are included in Appendix A.

The soil materials encountered in the borings were visually classified in the field, and the logs were recorded during the drilling and sampling operations. Visual classification of the materials encountered in the borings were made in general accordance with the Unified Soil Classification System (ASTM D 2488). A soil classification chart is presented in Appendix A.

Boring logs are presented in Appendix A and should be consulted for more details concerning subsurface conditions. Stratification lines were approximated by the field staff based on observations made at the time of drilling, while the actual boundaries between soil types may be gradual and soil conditions may vary at other locations.

### 2.2 Laboratory Testing

Laboratory tests were performed on selected soil samples to evaluate moisture content, dry density, soil strength, particle gradation, and corrosion characteristics. A description of the laboratory test methods



and results are presented in Appendix B. Previous laboratory testing was utilized for this investigation and pertinent laboratory test results are included in Appendix B.

### 3. SITE CONDITIONS

### 3.1 Site Description

The Site is an existing high school facility located in the community of Madera, as shown on Figure 1. The school facility is bounded by Martin Street on the north, Road 26 on the west, residential to the south and existing middle and elmentary schools to the east. The stadium will consists of approximately six (6) main structures comprised of a Toilet Building/Snack Bar, Dual Snack Bar/Restroom, Field House and Storage, Team Room, Weight Room, and Maintenace Grounds building. The topography of the site is relatively flat with a slight change in grade of about one foot on the west end of campus and consists of typical landscaping of mature trees, bushes and lawn area. Gopher holes were scattered in unpaved areas.

### 3.2 Subsurface Conditions

The near surface soil consisted of fine to medium grained sandy clay, clayey sand, sandy silt, and silty sand at depths of between 2 and 6 feet bgs. The near surface soils were underlain by silty sand, poorly graded sand, clayey sand, sandy silt and sandy clay to the maximum depth of exploration (51.5 bgs.). A relatively weak to moderately cemented zone was encountered at depths of between 4 and 6 feet bgs. The relative density of the coarse-grained soils was very loose to very dense. The boring logs in Appendix A provide a more detailed description of the soils encountered in each boring, including the applicable Unified Soil Classification System symbols. The approximate locations of the soil borings are shown on the Boring Location Map (Figure 2).

Groundwater is discussed in Appendix C.

### 4. CONCLUSIONS AND RECOMMENDATIONS

### 4.1 General

Based on the results of our field investigation, it is our opinion that the proposed improvements are geotechnically feasible and that the Site may be developed as presently planned. These conclusions are based on the assumption that the recommendations presented in this report will be incorporated into the design and construction of this project. The planned building improvements may be supported on shallow reinforced isolated or continuous concrete spread footings. The stadium lighting improvements may be supported by pole-type foundations.

### 4.2 Site Preparation and Earthwork Construction

The following procedures must be implemented during site preparation for the proposed improvements.



It should be noted that references to maximum dry density, optimum moisture content, and relative compaction are based on ASTM: D1557 (latest test revision) laboratory test procedures.

- 1. Prior to any site grading, all miscellaneous surface obstructions must be removed from the improvement area. Near surface soils containing vegetation, roots, organics, or other objectionable material must be stripped to a depth of at least 3-inches to expose a clean soil surface. Where trees or bushes are to be removed, the associated roots are expected to extend 3 feet or more below existing grade, as such, deeper excavation may be necessary for root removal. Roots larger than ½-inch in diameter must be removed. Surface strippings must not be incorporated into engineered fill unless the organic content is less than 3 percent by weight (ASTM: D2974).
- 2. Within the area of the planned improvements, remove existing concrete curbs, hardscape, underground utilities, and debris to expose a clean soil surface free of deleterious material.

Existing utilities or irrigation pipes must be removed to a point at least 5-feet horizontally outside the proposed building area. Resultant cavities must be backfilled with engineered fill. Abandoned pipelines to remain that are less than 2 inches in diameter must be capped at the cutoff point, while pipelines greater than 2 inches in diameter must be filled with a 1-sack sand-cement slurry.

- 3. Soil disturbed as a result of demolition, undocumented fill deemed to possess inadequate compaction or uniformity, debris, abandoned underground structures must be excavated to expose undisturbed native soil or suitable fill.
- 4. Following the required demolition, stripping, and/or removal of underground structures, the exposed soil surface in proposed improvement areas or areas to receive fill must be must be over-excavated uniformly to a minimum depth of 12 inches below existing site grade or below bottom of footing elevation, whichever is greater. Following the over-excavation, the exposed ground surface must be reviewed by the Geotechnical Engineer to evaluate if loose or soft zones are present that will require additional excavation.

The over-excavation must extend at least 5 feet laterally beyond the outside edge of the proposed foundation or areas to receive fill, whichever distance is greater. The exposed subgrade must be proof-rolled under the observation of a BSK field representative to detect soft or pliant areas. Soft or pliant areas must be over-excavated to firm native soil. The exposed surface must be scarified at minimum of 8 inches, uniformly moisture conditioned to 2 percent above optimum moisture, and compacted to 90 percent relative compaction.

5. Excavated soils, free of deleterious substances (organic matter, demolition debris, tree roots, etc.) and with less than 3 percent organic content by weight, may be returned to the excavations as engineered fill. Engineered fill must be placed in uniform layers not exceeding 8-inches in loose thickness, moisture-conditioned to within 2 percent of optimum moisture content and compacted to at least 90 percent of the maximum dry density. The upper 12 inches of engineered fill placed as backfill under pavement sections must be compacted to at least 95 percent of the maximum dry



density. Acceptance of engineered fill placement must be based on both moisture content at time of compaction and relative compaction.

6. Imported fill materials must be free of deleterious substances and have less than 3 percent organic content by weight. The project specifications must require the contractor to contact BSK for review of the proposed import fill materials for conformance with these recommendations at least two weeks prior to importing to the site, whether from on-site or off-site borrow areas. Imported fill soils must be non-hazardous and be derived from a single, consistent soil type source conforming to the following criteria:

| Maximum Particle Size:      | 3-inches       |
|-----------------------------|----------------|
| Percent Passing #4 Sieve:   | 65 – 100       |
| Percent Passing #200 Sieve: | 20 – 45        |
| Plasticity Index:           | less than 12   |
| Expansion Index:            | < 20           |
| Low Corrosion Potential:    |                |
| Soluble Sulfates:           | < 1,500 mg/kg  |
| Soluble Chlorides:          | < 300 mg/kg    |
| Soil Resistivity:           | > 5,000 ohm-cm |

The Department of Toxic Substance Control (DTSC) has detailed guidelines for the testing of import soils to school sites. These guidelines take into account the past and present land usage at a borrow pit, the acreage of the borrow pit and the volume of import soil to establish the amount of chemical testing of import fill recommended. BSK must be contacted for review and analytical testing of proposed import fill materials for conformance with these recommendations at least 15 days prior to transporting fill to the site.

Grading operations must be scheduled as to avoid working during periods of inclement weather. Should these operations be performed during or shortly following periods of inclement weather or following irrigation, unstable soil conditions may result in the soils exhibiting a "pumping" condition. This condition is caused by excess moisture, in combination with compaction, resulting in saturation and near zero air voids in the soils. If this condition occurs, the affected soils must be over-excavated to the depth at which stable soils are encountered and replaced with suitable soils compacted as engineered fill. Alternatively, the Contractor may proceed with grading operations after utilizing a method to stabilize the soil subgrade, which must be subject to review by BSK prior to implementation.

### 4.3 Foundations

### 4.3.1 Shallow Footings

Based on our investigation, the loads for the proposed buildings can be supported by continuous perimeter footings and isolated interior footings bearing on native undisturbed soil or engineered fill



provided that the bottom of the footing excavations have been checked by a BSK representative. The recommended allowable soil bearing pressures in pounds per square foot (psf) are presented below.

| FOOTING BEARING CAPACITY RECOMMENDATIONS                                                                  |                   |                   |            |
|-----------------------------------------------------------------------------------------------------------|-------------------|-------------------|------------|
| Footing Type                                                                                              | Allowable Bearing | Minimum Embedment | Minimum    |
|                                                                                                           | Pressure (psf)*   | (in)**            | Width (in) |
| Continuous Footings                                                                                       | 2,000 psf         | 24                | 18         |
| Interior Footings                                                                                         | 2,100 psf         | 12                | 24         |
| * Pounds per square foot, dead plus live load. Includes factor of safety (FS) of at least 3.              |                   |                   |            |
| **Below lowest adjacent grade defined as bottom of slab on the interior and finish grade at the exterior. |                   |                   |            |

Allowable soil bearing pressures may be increased by one-third for transient loads such as wind and seismic loads. Where footings are located adjacent to below-grade structures or near major underground utilities, the footings should extend 9 inches below a 2H:1V (horizontal to vertical) plane projected upward from the structure footing or bottom of the underground utility to avoid surcharging the below grade structure and underground utility with building loads. Also, where utilities cross <u>under</u> the perimeter footings line and enter "interior" space, the trench backfill should consist of a vertical barrier of impervious type material as explained in the "Earthwork" section of this report. In addition, where utilities cross <u>through</u> footings, flexible waterproof caulking should be provided between the sleeve and the pipe. Utility plans should be reviewed by BSK prior to trenching for conformance to these requirements.

Concrete for footings should be placed neat against firm native soil or engineered fill. The footing excavations should not be allowed to dry before placing concrete. The footing excavations should be monitored by a representative of BSK for compliance with appropriate moisture control and to confirm the adequacy of the bearing materials. If soft or loose materials are encountered at the bottom of the footing excavations, they should be removed and replaced with lean concrete or engineered fill. BSK should also be present during the overexcavation. Unit prices for such overexcavation and backfilling should be obtained during contractor bidding for this project.

### 4.3.2 Lateral Earth Pressures and Frictional Resistance

Provided the site is prepared as recommended above, the following earth pressure parameters for footings may be used for design purposes. The parameters shown in the table below are for drained conditions of select engineered fill or properly compacted and moisture conditioned native soil.

| Table 2: Recommended Static Lateral Earth Pressures for Footings |                                        |  |
|------------------------------------------------------------------|----------------------------------------|--|
| Lateral Pressure Condition                                       | Equivalent Fluid Density (pcf) Drained |  |
| Active Pressure                                                  | 42                                     |  |
| At Rest Pressure                                                 | 64                                     |  |
| Passive Pressure                                                 | 350                                    |  |



The lateral earth pressures listed herein are obtained by the conventional equation for active, at rest, and passive conditions assuming level backfill and a bulk unit weight of 135 pcf for the site soils. A coefficient of friction of 0.62 may be used between soil sub-grade and the bottom of footings. The coefficient of friction and passive earth pressure values given above represent ultimate soil strength values.

BSK recommends that a safety factor consistent with the design conditions be included in their usage in accordance with Sections 1806A.3.1 through 1806A.3.3 of the 2019 CBC. For stability against lateral sliding that is resisted solely by the passive earth pressure against footings or friction along the bottom of footings, a minimum safety factor of 1.5 is recommended. For stability against lateral sliding that is resisted by combined passive pressure and frictional resistance, a minimum safety factor of 2.0 is recommended. For lateral stability against seismic loading conditions, a minimum safety factor of 1.2 is recommended.

### 4.3.3 Pole Type Foundations

Structures such as stadium lighting, signs, etc. may be supported on pole type foundations. This type of foundation must be designed in accordance with Section 1807A.3 of the 2019 CBC. However, it is recommended that an allowable lateral soil bearing pressure of 350 psf per foot of embedment be used to develop parameters  $S_1$  and  $S_3$  rather than one of the values given in Table 1806A.2. This value includes a factor of safety of 2 and may be increased as indicated by 1806A.3 and the footnotes to Table 1806A.2. Unless the area surrounding the pole foundation is paved or covered with concrete flatwork, the upper 24 inches of soil should be ignored when calculating the minimum depth of embedment.

The following table provides expressions for the allowable and ultimate axial capacity using friction to resist axial loads. The skin friction within the upper two feet of embedded length must be ignored in unpaved areas. The total settlement of pier foundations designed in accordance with these recommendations should not exceed one-half inch.

| FRICTION RESISTANCE FOR VERTICAL LOADS |                     |  |
|----------------------------------------|---------------------|--|
| Allowable (lbs)                        | Ultimate (lbs)      |  |
| 50 DL <sup>2</sup>                     | 125 DL <sup>2</sup> |  |

Note (1) – D is pile diameter (feet), and L is the total embedment length feet).

Prior to placing concrete, loose or disturbed soils must be removed from the bottom of the drilled pier excavations using a flat bottom clean-out bucket or other pre-approved method. A representative of BSK must observe the drilling and clean-out associated with the construction of pier foundations in order to assess whether the actual bearing conditions are compatible with the conditions anticipated during the preparation of this report. Relatively cohesionless soils were observed within boring B-46 at 15 feet bgs.



To aid in the excavation for pole footings, consideration should be given to utilizing casing or mud drilling techniques to prevent/minimize potential cavings.

Pier deflection may govern the design lateral resistance. If provided with pier geometry, lateral load, and loading eccentricity, the estimated pier head deflection can be provided.

### 5.4 Slabs-on-Grade

Non-structural concrete slab-on-grade must be a minimum of 4-inches thick and must be supported on a compacted subgrade prepared in accordance with the "Site Preparation and Earthwork Construction" section of this report. Existing onsite surface soils are considered to have a low expansion potential for design purposes. To regulate cracking of the slabs, construction joints and/or saw-cut control joints must be provided in each direction at a maximum spacing of 10 feet on centers along with steel reinforcement as recommended by the project's Structural Engineer. Control joints must have a minimum depth of one-quarter of the slab thickness. It is recommended that steel reinforcement used in concrete slabs-on-grade consist of steel rebar. Structural concrete slabs-on-grade may be designed using an unadjusted long-term Modulus of Subgrade Reaction (Ks) of 200 pounds per cubic inch (pci) constructed on a properly compacted subgrade or engineered fill. This value is based on the correlations to soil strength using one foot by one-foot plate-load tests and should therefore be scaled (adjusted) to the actual slab width. For sandy soils, such as those found at this site, the adjusted Ks value can be obtained by multiplying the value provided above by  $[(B+B_1)/(2B)]^2$ , where B is the slab width in feet and B<sub>1</sub> is 1 foot (width of a one foot by one foot plate-load test apparatus).

Interior concrete slabs must be successively underlain by: 1-½ inches of washed concrete sand; a durable vapor retarder; and a smooth, compacted subgrade surface. The vapor retarder must meet the requirements of ASTM: E1745 Class A and have a water vapor transmission rate (WVTR) of less than or equal to 0.012 Perms as tested by ASTM: E96. Examples of acceptable vapor retarder products include: Stego Wrap (15-mil) Vapor Barrier by STEGO INDUSTRIES LLC; W.R. Meadows Premoulded Membrane with Plasmatic Core; and Zero-Perm by Alumiseal. Because of the importance of the vapor barrier, joints must be carefully spliced and taped.

If migration of subgrade moisture through the slab is not a concern, then the vapor retarder and overlying sand may be omitted. The slab subgrade must be kept in a moist condition until the vapor retarder or concrete slab is placed. BSK's representative must be called to the site to review soil and moisture conditions immediately prior to placing the vapor barrier or concrete slab.

As indicated in the PCA Engineering Bulletin 119, Concrete Floors and Moisture, and applicable ACI Committee reports (see ACI 360R-06, Design of Slabs-on-Ground, dated October 2006 and ACI 302.1R-04, Guide for Concrete Floor and Slab Construction, dated June 2004), the sand layer between the vapor retarder and concrete floor slab may be omitted. The advantage of this option is that it can reduce the amount of moisture that can be transmitted through the slab (especially if the sand layer becomes moist



or wet prior to placing the concrete); however, the risk of slab "curling" is much greater. The "curling" may result from a sharp contrast in moisture-drying conditions between the exposed slab surface and the surface in contact with the membrane. As recommended in the referenced ACI Committee reports, measures must be taken to reduce the risk of "curling" such as reducing the joint spacing, using a low shrinkage mix design, and reinforcing the concrete slab. In order to regulate cracking of the slab, we recommend that full depth construction joints and control joints be provided in each direction with slab thickness and steel reinforcing recommended by the structural engineer.

Excessive landscape water or leaking utility lines could create elevated moisture conditions under concrete slabs, which could result in adverse moisture or mildew conditions in floor slabs or walls. Accordingly, care must be taken to avoid excess irrigation around the structures, as well as to periodically monitor for leaking utility lines. Likewise, positive surface drainage must be provided around the perimeter of the structures as discussed in the "Surface Drainage Control" section.

The adverse effects of moisture vapor transmission on flooring materials can be substantially reduced by the use of a low porosity concrete. This can be achieved by specifying a low water-cement ratio (0.45 or less by weight) a minimum compressive strength of 4,000 psi at 28 days, and a minimum of 7 days wet-curing.

### 5.5 Excavation Stability

Soils encountered within the upper 10-feet are generally Type C soil in accordance with OSHA (Occupational Safety and Health Administration). The slopes surrounding or along temporary excavations may be vertical for excavations that are less than 5-feet deep and exhibit no indication of potential caving, but must be no steeper than 1.5H:1V for excavations that are deeper than 5-feet, to a maximum depth of 10-feet. Temporary excavations for the project construction must be left open for as short a time as possible and must be protected from water runoff. Slope height, slope inclination, and excavation depths (including utility trench excavations) must in no case exceed those specified in local, state, or federal safety regulations (e.g., OSHA Health and Safety Standards for Excavations 29 CFR Part 1926, or successor regulations). These excavation recommendations are based on soil characteristics derived from the borings. Variations in soil conditions will likely be encountered during excavation. At the time of construction, BSK must be afforded the opportunity to observe and document sloping and shoring conditions, and the opportunity to provide review of actual field conditions to account for condition variations not otherwise anticipated in the preparation of these recommendations.

### 5.6 Utility Trench Excavation and Backfill

Pipes and conduits must be bedded and shaded in accordance with the requirements of the pipe manufacturer. Where no specific requirements exist, we recommend a minimum of 6-inches of sand bedding material for pipe installations 12 to 24-inches in diameter. For pipe diameters, smaller than 12-inches, the bedding thickness may be reduced to 4-inches. The bedding material and envelope (up to 6-



inches above the pipe) must consist of sand (Sand Equivalent greater than 30), be placed in loose lifts not exceeding 8-inches in thickness, compacted to at least 90 percent of the maximum dry density, and moisture conditioned to within 2 percent of optimum moisture content. Water jetting to attain compaction must not be allowed.

Adequate excavation width must be provided to permit uniform compaction on both sides of utility lines installed within the trench. The trench backfill material may consist of engineered fill. Trench backfill outside the building footprint must be placed in loose lifts not to exceed 8-inches in loose thickness, compacted to at least 90 percent of the maximum dry density, and moisture conditioned to within 2 percent of optimum moisture content. The upper 12-inches of trench backfill below pavement sections must be compacted to at least 95 percent of the maximum dry density. Conduits extending through or below footings must be "sleeved" as determined by the Project Structural Engineer. Utility trench backfill beneath the building areas must be backfilled in accordance with Section 4.3 (Site Preparation and Earthwork Construction).

### 5.7 Site Drainage

Proper site drainage is important for the long-term performance of the planned structure. The Site should be graded so as to carry surface water away from the building foundations. In addition, all roof gutters should be connected directly into the storm drainage system or drain onto impervious surfaces provided that a safety hazard is not created.

### 5.8 Corrosivity Results

A soil sample was collected during our field investigation in the upper 5 feet below the ground surface in boring B-44, and was submitted for corrosion testing. The sample was tested for, resistivity, chloride content, and sulfate content in accordance with ASTM test methods. The test results are presented at the end of Appendix B. Because we are not corrosion specialists, we recommend that a corrosion specialist be consulted for advice on proper corrosion protection for underground piping which will be in contact with the soils and other design details.

Based upon the resistivity measurements, the samples tested classified as "corrosive". It is recommended all buried iron, steel, cast iron, ductile iron, galvanized steel, and dielectric coated steel or iron be properly protected against corrosion depending upon the critical nature of the structure. It is recommended all buried metallic pressure piping, such as ductile iron firewater pipelines, should be protected against corrosion.

The above are general discussions. A more detailed investigation may include more or fewer concerns and should be directed by a corrosion expert. BSK does not practice corrosion engineering. Consideration should also be given to soils in contact with concrete that will be imported to the Site during construction, such as topsoil and landscaping materials. For instance, any imported soil materials should not be any



more corrosive than the on-site soils and should not be classified as being more corrosive than "moderately corrosive." Also, on-site cutting and filling may result in soils contacting concrete that were not anticipated at the time of this investigation.

### 5.9 Plan Review and Construction Observation

We recommend that BSK be retained by the Client to review the final foundation and grading plans and specifications before they go out to bid. It has been our experience that this review provides an opportunity to detect misinterpretation or misunderstandings prior to the start of construction.

Variations in soil types and conditions are possible and may be encountered during construction. To permit correlation between the soil data obtained during this investigation and the actual soil conditions encountered during construction, we recommend that BSK be retained to provide observation and testing services during site earthwork and foundation construction. This will allow us the opportunity to compare actual conditions exposed during construction with those encountered in our investigation and to provide supplemental recommendations if warranted by the exposed conditions. Earthwork should be performed in accordance with the recommendations presented in this report, or as recommended by BSK during construction. BSK should be notified at least two weeks prior to the start of construction and prior to when observation and testing services are needed.

### 6. ADDITIONAL SERVICES AND LIMITATIONS

Our services were performed in a manner consistent with that level of care and skill ordinarily exercised by other members of BSK's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions, opinions and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. BSK makes no other representation, guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

This report may be used only by the District (Client) and the registered design professional in responsible charge and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than two (2) years from the date of the report.

Our services were performed based on project information provided by the Client. If the Client does not retain BSK to review any plans and specifications, including any revisions or modifications to the plans and specifications, BSK assumes no responsibility for the suitability or misinterpretation of our recommendations. In addition, if there are any changes in the field to the plans and specifications, the Client must obtain written approval from BSK's engineer that such changes do not affect our recommendations. Failure to do so will vitiate BSK's recommendations.



The scope of services was limited to drilling and sampling at the Site, laboratory testing, and preparation of this recommendations report. It should be recognized that definition and evaluation of subsurface conditions are difficult. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. The conclusions of this assessment are based on subsurface exploration including borings drilled to a maximum depth of 16.5 to 51.5 feet BGS, laboratory testing, and engineering analyses.

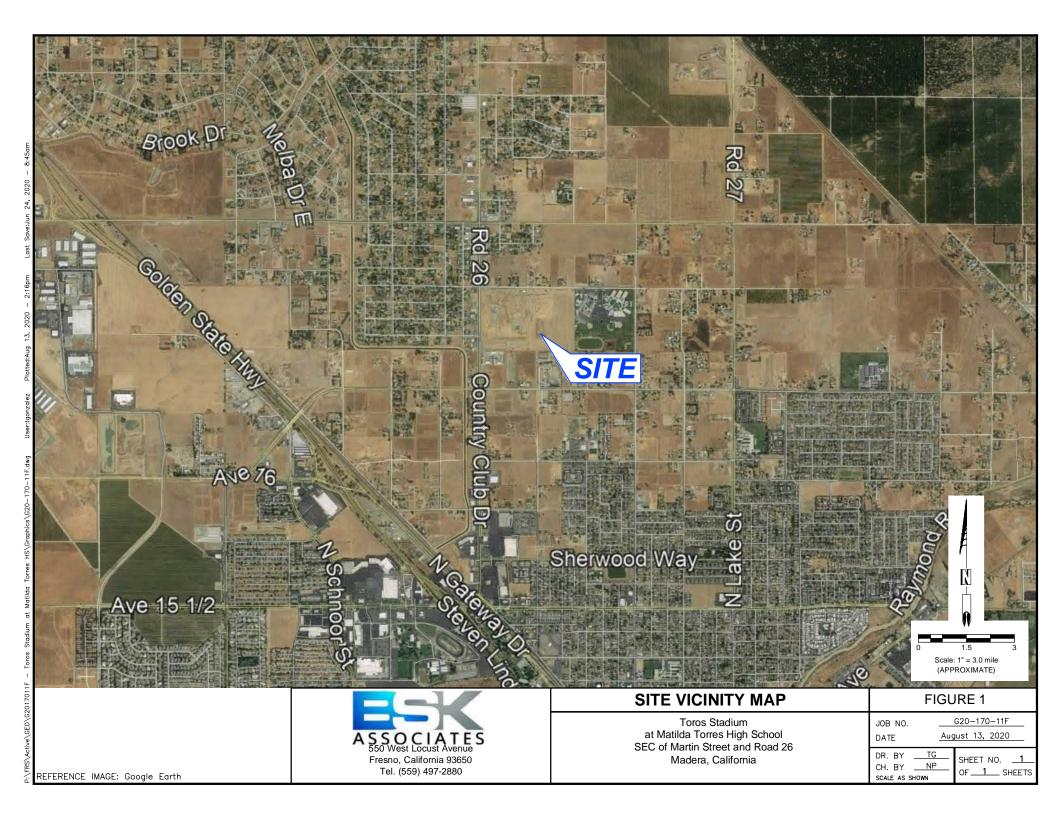
Recommendations contained in this report are based on our field observations and subsurface explorations, limited laboratory tests, and our present knowledge of the proposed construction. It is possible that soil or groundwater conditions could vary beyond the point explored. If soil or groundwater conditions are encountered during construction that differ from those described herein, the Client is responsible for ensuring that BSK is notified immediately so that we may re-evaluate the recommendations of this report. If the scope of the proposed construction, including the estimated structure loads, and the design depths or locations of the foundations, changes from that described in this report, the conclusions and recommendations of this report are not considered valid unless the changes are reviewed, and the conclusions of this report are modified or approved in writing, by BSK.

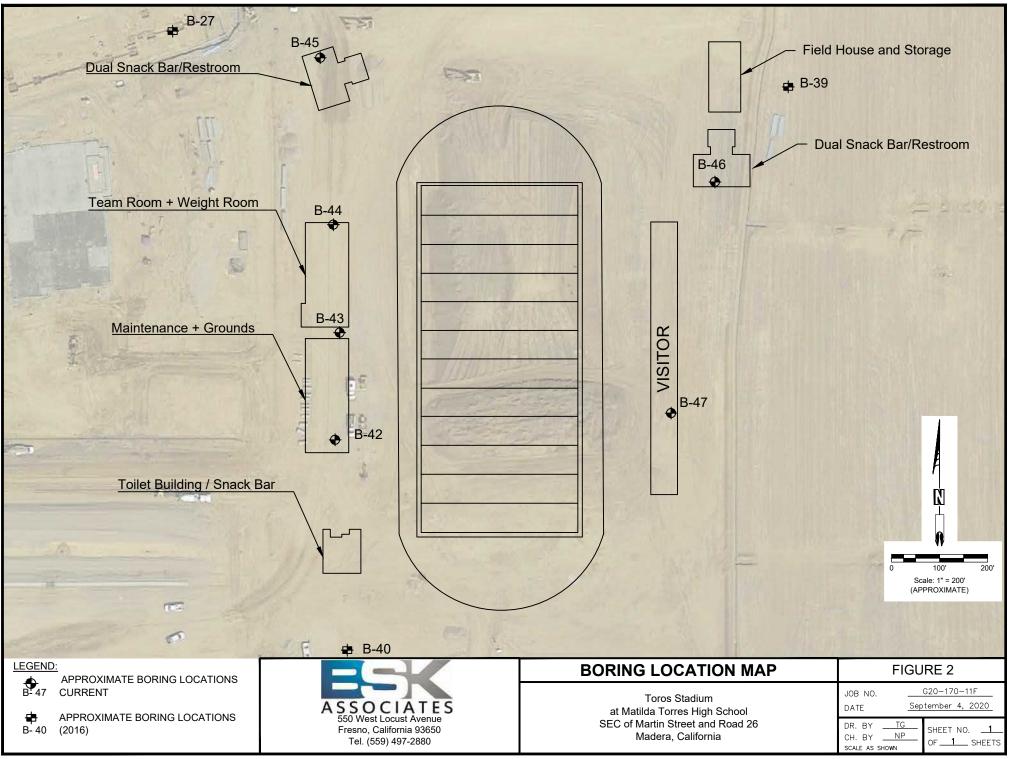
As the geotechnical engineering firm that performed the geotechnical evaluation for this project, BSK should be retained to confirm that the recommendations of this report are properly incorporated in the design of this project, and properly implemented during construction. This may avoid misinterpretation of the information by other parties and will allow us to review and modify our recommendations if variations in the soil conditions are encountered. As a minimum BSK should be retained to provide the following continuing services for the project:

- Review the project plans and specifications, including any revisions or modifications;
- Observe and evaluate the site earthwork operations to confirm subgrade soils are suitable for construction of foundations, slabs-on-grade, pavements and placement of engineered fill;
- Confirm engineered fill for the structures and other improvements is placed and compacted per the project specifications; and
- Observe shallow foundation and drilled pier excavations to confirm conditions are as anticipated.

The scope of services for this subsurface exploration and geotechnical report did not include environmental assessments or evaluations regarding the presence or absence of wetlands or hazardous substances in the soil, surface water, or groundwater at this Site.

This report, and any future addenda or reports regarding this Site, may be made available to bidders to supply them with only the data contained in the report regarding subsurface conditions and laboratory test results at the point and time noted. Bidders may not rely on interpretations, opinion, recommendations, or conclusions contained in the report. Because of the limited nature of any subsurface study, the contractor may encounter conditions during construction which differ from those presented in this report. In such event, the contractor should promptly notify the owner so that BSK's geotechnical





engineer can be contacted to confirm those conditions. We recommend the contractor describe the nature and extent of the differing conditions in writing and that the construction contract include provisions for dealing with differing conditions. Contingency funds should be reserved for potential problems that may arise during earthwork and foundation construction.



**FIGURES** 







## APPENDIX A FIELD EXPLORATION

The field exploration, conducted on August 24, 2020 consisted of a site reconnaissance and drilling six (6) exploratory test borings. The test borings were drilled to depths of approximately 11.5 to 20 feet below ground surface (bgs). The test borings were drilled with a truck-mounted drill rig, equipped with 8-inch augers. The approximate location of the test boring is illustrated on Figure 2, Boring Location Map.

The soil materials encountered in the test borings were visually classified in the field and logs were recorded during the excavation and sampling operations. Visual classification of the materials encountered in the test borings were made in general accordance with the Unified Soil Classification System (ASTM D2487). A soil classification chart is presented herein. Boring logs are presented herein and should be consulted for more details concerning subsurface conditions.

Subsurface samples were obtained at the various depths shown on the boring logs by driving samplers which consisted of a 2.5-inch inside diameter (I.D.) lined with stainless sleeves and 1.4-inch I.D. Standard Penetration Test (SPT) sampler. The samplers were driven 18 inches using a 140-pound, automatic hammer dropping 30 inches. The number of blows required to drive the last 12 inches was recorded as the blow count (blows/foot) on the log of borings. The relatively undisturbed soil core samples were capped at both ends to preserve the samples at their natural moisture content. Disturbed soil samples were obtained using the Split-Spoon Sampler (marked X in logs) and were placed and sealed in polyethylene bags. At the completion of the field exploration, the test borings were backfilled with the soil cuttings, as set forth in BSK's proposal.

It should be noted that the use of terms such as "soft", "medium stiff", "very stiff" or "hard" to describe the consistency of a soil is based on sampler blow count and is not necessarily reflective of the in-place density or unit weight of the soils being sampled. The relationship between sampler blow count and consistency is provided in the following Tables A-1 and A-2 for coarse grained (sandy and gravelly) soils and fine grained (silty and clayey) soils, respectively.



| Table A-1: Density of | Table A-1: Density of Coarse-Grained Soil versus Sampler Blow Count |                        |  |  |  |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|--|
| Consistency           | SPT Blow Count                                                      | 2.5" I.D. Cal. Sampler |  |  |  |  |  |  |  |  |
| Very Loose            | <4                                                                  | <6                     |  |  |  |  |  |  |  |  |
| Loose                 | 4 - 10                                                              | 6 - 15                 |  |  |  |  |  |  |  |  |
| Medium Dense          | 10 - 30                                                             | 15 – 45                |  |  |  |  |  |  |  |  |
| Dense                 | 30 – 50                                                             | 45 – 80                |  |  |  |  |  |  |  |  |
| Very Dense            | >50                                                                 | >80                    |  |  |  |  |  |  |  |  |

| Table A-2: Consistence | y of Fine-Grained Soil vers | us Sampler Blow Count  |
|------------------------|-----------------------------|------------------------|
| Consistency            | SPT Blow Count              | 2.5" I.D. Cal. Sampler |
| Very Soft              | <2                          | <3                     |
| Soft                   | 2 – 4                       | 3-6                    |
| Medium Stiff           | 4 – 8                       | 6 - 12                 |
| Stiff                  | 8 - 15                      | 12 – 24                |
| Very Stiff             | 15 – 30                     | 24 – 45                |
| Hard                   | >30                         | >45                    |



|                                                   | MAJOR DIVI                                       | SIONS                           |                             | TYPICAL NAMES                                                                                                             |
|---------------------------------------------------|--------------------------------------------------|---------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                   | GRAVELS                                          | CLEAN GRAVELS<br>WITH LITTLE OR | GW                          | WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES                                                                                 |
|                                                   | MORE THAN HALF                                   | NO FINES                        | GP                          | POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES                                                                               |
| SOILS<br>0 sieve                                  | COARSE FRACTION<br>IS LARGER THAN<br>NO. 4 SIEVE | GRAVELS WITH                    | GM                          | SILTY GRAVELS, POORLY GRADED GRAVEL-SAND-SILT<br>MIXTURES                                                                 |
| GRAINED S<br>Half > #200                          | NO. 4 SIEVE                                      | OVER 15% FINES                  | GC                          | CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND-CLAY<br>MIXTURES                                                                |
|                                                   |                                                  |                                 | SW                          | WELL GRADED SANDS, GRAVELLY SANDS                                                                                         |
| COARSE<br>More than                               | SANDS<br>MORE THAN HALF                          | WITH LITTLE<br>OR NO FINES      | SP                          | POORLY GRADED SANDS, GRAVELLY SANDS                                                                                       |
|                                                   | COARSE FRACTION                                  | SANDS WITH                      | SM                          | SILTY SANDS, POOORLY GRADED SAND-SILT MIXTURES                                                                            |
|                                                   | NO. 4 SIEVE                                      | OVER 15% FINES                  | SC                          | CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES                                                                            |
|                                                   |                                                  |                                 | ML                          | INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR,<br>SILTY OR CLAYEY FINE SANDS, OR CLAYEY SILTS WITH<br>SLIGHT PLASTICITY |
| ILS<br>sieve                                      | 0.2107.11                                        | ID CLAYS<br>LESS THAN 50        | CL                          | INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY,<br>GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS,<br>LEAN CLAYS                   |
| VEU SOIL<br>f < #200 si                           |                                                  |                                 | OL                          | ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW<br>PLASTICITY                                                                |
| FINE GRAINED SOILS<br>More than Half < #200 sieve |                                                  |                                 | MH                          | INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS FINE<br>SANDY OR SILTY SOILS, ELASTIC SILTS                                    |
| FINE<br>More tha                                  |                                                  | ID CLAYS<br>REATER THAN 50      | СН                          | INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS                                                                             |
|                                                   |                                                  |                                 | OH                          | ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY,<br>ORGANIC SILTS                                                              |
| I                                                 | HIGHLY ORGAN                                     | NIC SOILS                       | Pt <u><u>v</u> <u>v</u></u> | PEAT AND OTHER HIGHLY ORGANIC SOILS                                                                                       |

Modified California RV R-Value Standard Penetration Test (SPT) SA Sieve Analysis  $\boxtimes$ Split Spoon SW Swell Test  $\square$ Pushed Shelby Tube ΤС Cyclic Triaxial ΠΣ Auger Cuttings ΤХ Unconsolidated Undrained Triaxial <u>M</u>2 Grab Sample ΤV Torvane Shear  $\square$ Sample Attempt with No Recovery UC **Unconfined Compression** CA **Chemical Analysis** (Shear Strength, ksf) (1.2) CN Consolidation WA Wash Analysis CP Compaction (20) (with % Passing No. 200 Sieve) DS Direct Shear  $\overline{\Delta}$ ΡM Permeability Water Level at Time of Drilling Ţ PP Pocket Penetrometer Water Level after Drilling(with date measured)

## SOIL CLASSIFICATION CHART AND LOG KEY



| A S                                                  | S                       | bс                          |                              | TES                                | 550 v<br>Fresn<br>Telepl<br>Fax: | o, CA<br>hone: | ust Ave<br>93650<br>(559)<br>497-28 | Location: 16645 Road 26, Madera, CA<br>Project No.: G20-170-11F<br>497-2880<br>86 Logged By: J. Lue                                                                                 |                     |
|------------------------------------------------------|-------------------------|-----------------------------|------------------------------|------------------------------------|----------------------------------|----------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                      |                         |                             |                              |                                    | T GX.                            | (000)          | 107 20                              | Checked By: N. Popence                                                                                                                                                              | Boring: <b>B-42</b> |
| Depth (Feet)                                         | Samples<br>Bulk Samples | Penetration<br>Blows / Foot | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve       | Graphic Log    | nscs                                | MATERIAL DESCRIPTION                                                                                                                                                                | REMARKS             |
| 1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -               | 9                       | 55                          | 123.0                        | 10.8                               |                                  |                | SM                                  | Silty SAND - brown, moist, fine to medium grained, trace clay                                                                                                                       |                     |
| 7 -<br>8 -<br>9 -<br>10-<br>11-<br>12-<br>13-        |                         | 89                          |                              |                                    |                                  |                | SM                                  | Silty SAND with Gravel - brown, moist, fine to coarse grained gravel                                                                                                                |                     |
| 14 -<br>15 -<br>16 -<br>17 -<br>18 -<br>19 -<br>20 - |                         | 51                          |                              |                                    |                                  |                | SM                                  | Silty SAND - brown, moist, fine to medium grained sand<br>Boring terminated at approximately 16.5 feet bgs.<br>No groundwater encountered.<br>Boring backfilled with soil cuttings. |                     |
| 21–<br>22–<br>23–<br>24–                             |                         |                             |                              | aja Explo                          |                                  |                |                                     | Surface Elevation:                                                                                                                                                                  |                     |

| AS                                                                                                              | 5 S          | 0                 | С            |                              | T E S                              | Fresn<br>Telep<br>Fax:     | o, CA<br>hone:<br>(559)                                                                           | 93650<br>(559)<br>497-28 | Project No.: G20-170-11F<br>497-2880<br>86 Logged By: J. Lue                                                                                                                                                                                                                                                                                       |                     |
|-----------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------------|------------------------------|------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                 |              |                   |              |                              |                                    |                            | . ,                                                                                               |                          | Checked By: N. Popence                                                                                                                                                                                                                                                                                                                             | Boring: <b>B-43</b> |
| Depth (Feet)                                                                                                    | Samples      | Bulk Samples      | Blows / Foot | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log                                                                                       | NSCS                     | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                               | REMARKS             |
| 1 - 2 - 3 - 4 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17 |              |                   | 98<br>50     | 119.3                        | 6.9                                |                            | V N. Y. M. Y. M. Y. M. Y. M. Y. M. Y. W. Y. W. Y. W. Y. W. Y. | SM                       | Silty SAND - brown, moist, fine to medium grained sand,<br>strong cement                                                                                                                                                                                                                                                                           |                     |
| Dril<br>Dril                                                                                                    | ling<br>ling | Cor<br>Met<br>Equ | hod:         | CME                          | aja Explo<br>75<br>Iollow St       |                            |                                                                                                   | SM                       | Silty SAND - brown, moist, fine to medium grained sand, weakly cement         Boring terminated at approximately 20 feet bgs. No groundwater encountered. Boring backfilled with soil cuttings.         Surface Elevation:         Sample Method: 2.5" I.D. Cal Mod & 1.5" I.D. SPT S Groundwater Depth: Not Encountered Completion Depth: 20 Feet | Split Spoon         |

|                                        |                       |                             |                       |                              |                                    | 550 V<br>Fresn             | o. CA       | ust Ave<br>93650 | <b>Project No.:</b> G20-170-11F<br>497-2880                                                                                                                                                                                                                          | Page 1 of 1         |
|----------------------------------------|-----------------------|-----------------------------|-----------------------|------------------------------|------------------------------------|----------------------------|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                        |                       | Ŭ                           | -                     |                              | 20                                 | Fax:                       | (559) 4     | 497-28           | 36 Logged By: J. Lue<br>Checked By: N. Popence                                                                                                                                                                                                                       | Boring: <b>B-44</b> |
| Depth (Feet)                           | Samples               | Bulk Samples<br>Penetration | Blows / Foot          | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log | NSCS             | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                 | REMARKS             |
| -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |                       |                             | <sup>59</sup>         | 117.8                        | 6.1                                |                            |             | SM               | Silty SAND - brown, moist, fine to coarse grained trace clay, weakly cemented Silty SAND - brown, moist, fine to medium grained, weakly cemented Boring terminated at approximately 11.5 feet bgs. No groundwater encountered. Boring backfilled with soil cuttings. |                     |
| Dril<br>Dril<br>Dril<br>Dril<br>Dril   | ling<br>ling<br>e Sta | Meti<br>Equi<br>irted       | hod:<br>ipme<br>I: 8/ | CME                          | Iollow Ste                         |                            |             |                  | Surface Elevation:<br>Sample Method: 2.5" I.D. Cal Mod & 1.5" I.D.<br>Groundwater Depth: Not Encountered<br>Completion Depth: 11.5 Feet<br>Borehole Diameter: 8"<br>* See key sheet for symbols and abbreviations                                                    | . SPT Split Spoon   |

Γ

<sup>\*</sup> See key sheet for symbols and abbreviations used above.

|                                                    |                       | 6                           |                     | }                            |                                    | 550 V<br>Fresn             | o CA             | Ist Ave         | Project No. COO 170 115                                                                                                                                            | Page 1 of 1         |
|----------------------------------------------------|-----------------------|-----------------------------|---------------------|------------------------------|------------------------------------|----------------------------|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| AS                                                 | SS                    | 0                           | CI                  | A                            | ĒS                                 | Telep<br>Fax:              | hone:<br>(559) 4 | (559)<br>497-28 | 497-2880<br>86 <b>Logged By:</b> J. Lue                                                                                                                            |                     |
|                                                    |                       |                             |                     |                              |                                    |                            |                  |                 | Checked By: N. Popenoe                                                                                                                                             | Boring: <b>B-45</b> |
| Depth (Feet)                                       | Samples               | Bulk Samples<br>Penetration | Blows / Foot        | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log      | nscs            | MATERIAL DESCRIPTION                                                                                                                                               | REMARKS             |
| - 1 -<br>- 2 -<br>- 3 -<br>- 4 -<br>- 5 -<br>- 6 - |                       |                             |                     | 122.2                        | 9.3                                |                            |                  | SM<br>SC        | Silty SAND - brown, moist, fine to medium grained, trace<br>clay<br>Clayey SAND - brown, moist, fine to medium grained,<br>medium plastic                          |                     |
| - 7 -<br>- 8 -<br>- 9 -<br>- 10-                   |                       |                             | 9                   |                              |                                    |                            |                  | SM              | Silty SAND - brown, moist, fine to medium grained, trace clay, weakly cemented                                                                                     |                     |
| -11-<br>-12-<br>-13-<br>-14-<br>-15-               |                       | 4                           | 6                   |                              |                                    |                            |                  |                 | Boring terminated at approximately 11.5 feet bgs.<br>No groundwater encountered.<br>Boring backfilled with soil cuttings.                                          |                     |
| - 16-<br>- 17-                                     |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| -18-                                               |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| - 19-                                              |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| -20-                                               |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| -21-                                               |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| -22-<br>-23-                                       |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| -23-                                               |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| -24-                                               |                       |                             |                     |                              |                                    |                            |                  |                 |                                                                                                                                                                    |                     |
| Drill<br>Drill<br>Drill<br>Date                    | ling<br>ling<br>e Sta | Meth<br>Equi<br>arted       | od:<br>pme<br>: 8/2 | CME                          | ollow Ste                          |                            |                  |                 | Surface Elevation:<br>Sample Method: 2.5" I.D. Cal Mod & 1.5" I.D. S<br>Groundwater Depth: Not Encountered<br>Completion Depth: 11.5 Feet<br>Borehole Diameter: 8" | SPT Split Spoon     |

Γ

<sup>\*</sup> See key sheet for symbols and abbreviations used above.

| AS                                                       | S S                   | 0                           | CI                |                              |                                    | 550 V                      | Assoc<br>V Loc<br>o, CA<br>hone:<br>(559) | ust Ave         | Loo<br>9 Pro<br>497-2880                     | oject: Matilda Torres HS Stadium<br>cation: 16645 Road 26, Madera, CA<br>oject No.: G20-170-11F<br>gged By: J. Lue                                              | Page 1 of 1         |
|----------------------------------------------------------|-----------------------|-----------------------------|-------------------|------------------------------|------------------------------------|----------------------------|-------------------------------------------|-----------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                          |                       |                             |                   |                              |                                    | I UA.                      | (000)                                     | -07-20          |                                              | ecked By: N. Popenoe                                                                                                                                            | Boring: <b>B-46</b> |
| Depth (Feet)                                             | Samples               | Bulk Samples<br>Penetration | Blows / Foot      | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log                               | NSCS            |                                              | MATERIAL DESCRIPTION                                                                                                                                            | REMARKS             |
| - 1 -<br>- 2 -<br>- 3 -<br>- 4 -<br>- 5 -                |                       | <u>ه</u><br>4               |                   | 10.5                         | 9.7                                |                            |                                           | SM              | Silty SAND<br>clay<br>weakly ce              | - brown, moist, fine to medium grained, trace                                                                                                                   |                     |
| - 6 -<br>- 7 -<br>- 8 -<br>- 9 -<br>- 10-                |                       | 1                           | 5                 |                              |                                    |                            |                                           |                 | strongly o                                   |                                                                                                                                                                 |                     |
| -11-<br>-12-<br>-13-<br>-14-<br>-15-                     |                       | 8                           | 3                 |                              |                                    |                            |                                           | SP-SM           | – – – – – – –                                | ded SAND with Silt - brown, moist, fine to                                                                                                                      |                     |
| - 16 -<br>- 17 -<br>- 18 -<br>- 19 -<br>- 20 -<br>- 21 - |                       | 1                           | 0                 |                              |                                    |                            |                                           | 5 - <b>5</b> 10 | coarse grain<br>Boring termin<br>No groundwa |                                                                                                                                                                 |                     |
| -22-<br>-23-<br>-24-                                     |                       |                             |                   |                              |                                    |                            |                                           |                 |                                              |                                                                                                                                                                 |                     |
| Dril<br>Dril<br>Date                                     | ling<br>ling<br>e Sta | Meth<br>Equij<br>irted:     | od:<br>pme<br>8/2 | CME<br>nt: H                 | ollow St                           |                            |                                           |                 |                                              | Surface Elevation:<br>Sample Method: 2.5" I.D. Cal Mod & 1.5" I.I<br>Groundwater Depth: Not Encountered<br>Completion Depth: 16.5 Feet<br>Borehole Diameter: 8" | D. SPT Split Spoon  |

\* See key sheet for symbols and abbreviations used above.

|                                              | S S                   | 0                  | C                                                     |                              |                                    | 550 V                      | Associ<br>V Locu<br>No, CA | ust Ave | Lo<br>) Pro<br>497-2880                                              | oject: Matilda Torres HS Stadium<br>ocation: 16645 Road 26, Madera, 0<br>oject No.: G20-170-11F<br>ogged By: J. Lue                                                            | CA       | Page 1 of 1         |
|----------------------------------------------|-----------------------|--------------------|-------------------------------------------------------|------------------------------|------------------------------------|----------------------------|----------------------------|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|
|                                              |                       | Ŭ                  | -                                                     |                              |                                    | Fax:                       | (559)                      | 497-28  |                                                                      | necked By: N. Popence                                                                                                                                                          |          | Boring: <b>B-47</b> |
| Depth (Feet)                                 | Samples               | Bulk Samples       | Peneuration<br>Blows / Foot                           | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log                | nscs    |                                                                      | MATERIAL DESCRIPTION                                                                                                                                                           | 1        | REMARKS             |
| $\begin{array}{c} -11111111$                 |                       |                    | <ul><li>18</li><li>61</li><li>41</li><li>60</li></ul> | 110.9                        | 10.2                               |                            |                            | SM      | weakly ce<br>fine to me<br>fine to coa<br>Boring termi<br>No groundw | emented, trace asphalt, black sand<br>edium grained sand<br>arse grained sand<br>inated at approximately 15 feet bgs<br>rater encountered.<br>filled with soil cuttings.       |          |                     |
| Dril<br>Dril<br>Dril<br>Dril<br>Dril<br>Dril | ling<br>ling<br>e Sta | Met<br>Equ<br>arte | :hod:<br>iipme<br>d: 8/                               | CME                          | Iollow St                          |                            |                            |         |                                                                      | Surface Elevation:<br>Sample Method: 2.5" I.D. Cal I<br>Groundwater Depth: Not Enco<br>Completion Depth: 16.5 Feet<br>Borehole Diameter: 8"<br>* See key sheet for symbols and | ountered |                     |

|                                 |         |              |                             | >                            |                                    |                            |             |       | Checked By: S. Demmers                                                       | Boring: <b>B- 8</b> |
|---------------------------------|---------|--------------|-----------------------------|------------------------------|------------------------------------|----------------------------|-------------|-------|------------------------------------------------------------------------------|---------------------|
|                                 | Samples | Bulk Samples | Penetration<br>Blows / Foot | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log | nscs  | MATERIAL DESCRIPTION                                                         | REMARKS             |
| -                               |         |              | 63                          | 117.2                        |                                    |                            |             | SM    | Silty SAND - orange brown, moist, dense, fine to medium grained              |                     |
| 2 -<br>3 -<br>4 -<br>5 -<br>7 - | X       |              | 50/<br>6"                   |                              |                                    | 38                         |             | SC    | <b>Clayey SAND</b> - orange brown, moist, very dense, fine to medium grained |                     |
| 3 —<br>9 —<br>1—<br>2—<br>3—    |         |              | 65                          | 128.7                        | 8.6                                |                            |             |       |                                                                              |                     |
| 4—<br>5—<br>7—<br>8—<br>9—      | X       |              | 35                          |                              |                                    |                            |             | SM    | Silty SAND - light brown, moist, dense, fine to medium grained               |                     |
| 0-<br>1-<br>2-<br>3-            |         |              | 50                          | 115.5                        | 7.5                                |                            |             |       | yellow brown, fine grained                                                   |                     |
| 4-<br>5-<br>6-<br>7-<br>8-      | X       |              | 30                          |                              |                                    |                            |             | CL-ML | Silty CLAY - light brown, moist, hard, low plasticity                        |                     |
| 9–                              |         |              |                             |                              |                                    |                            |             |       |                                                                              |                     |

| E                                                                                 | S                     |                             |                                     | T                |                                    | 550 V<br>Fresn             | o CA        | ust Ave<br>93650     | Project No.: G16-159-11F<br>97-2880                                                                                                                                                                         | Page 2 of 2             |
|-----------------------------------------------------------------------------------|-----------------------|-----------------------------|-------------------------------------|------------------|------------------------------------|----------------------------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                   |                       | •                           |                                     | • •              | 20                                 | -ax:                       | 559-4       | 97-288               | 6 Logged By: J. Coburn<br>Checked By: S. Demmers                                                                                                                                                            | Boring: <b>B- 8</b>     |
| Depth (Feet)                                                                      | Samples               | Bulk Samples<br>Penetration | Blows / Foot<br>In-Situ Dry Density | (pct)<br>In Situ | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log | nscs                 | MATERIAL DESCRIPTION                                                                                                                                                                                        | REMARKS                 |
| -31-<br>-32-<br>-33-<br>-34-<br>-35-<br>-36-<br>2<br>-37-<br>-38-<br>-39-<br>-40- | X                     | 1                           | 5                                   |                  |                                    |                            |             | ML                   | Silty SAND - light brown, moist, dense, fine to medium<br>grained (continued)<br>SILT - light brown, moist, very stiff                                                                                      |                         |
| -41-<br>-42-<br>-43-<br>-44-<br>-45-<br>-46-<br>-47-<br>-48-                      | $\times$              | 1:                          | _                                   | .2               | 6.3                                |                            |             | SP-SM<br>CL-ML<br>SM | Poorly Graded SAND - yellow brown, moist, dense, fine to medium grained         Silty CLAY - green grey, moist, stiff         Silty SAND - light brown, moist, medium dense, fine to                        |                         |
| -49-<br>-50-<br>-51-<br>-52-<br>-53-<br>-54-<br>-55-                              |                       | 2                           | 3 87.                               | 1                | 35.9                               |                            |             | ML                   | medium grained         Clayey SILT - green grey, moist, very stiff         Boring terminated at approximately 51.5 feet bgs         Boring backfilled with soil cuttings         No groundwater encountered |                         |
| Drilli<br>Drilli<br>Drilli<br>Date                                                | ing I<br>ing I<br>Sta | Metho<br>Equip<br>rted:     | od: Ho                              | Mc<br>Mc<br>16   | ve's Dr<br>v Stem<br>bbile 61      | Auge                       | r           |                      | Surface Elevation:<br>Sample Method: 2.5-inch I.D. Modified & 1.5-inc<br>Groundwater Depth: Not Encountered<br>Completion Depth: 50 Feet<br>Borehole Diameter: 8"                                           | ch I.D. SPT Split Spoon |

<sup>\*</sup> See key sheet for symbols and abbreviations used above.

| 15                                     | SS           | С            | C                           | IÂ                           | TES                                | Telep<br>Fax:              | hone<br>559-4 | , 93650<br>: 559-4<br>!97-288 | Project No.: G16-159-11F<br>6 Logged By: J. Coburn                                                                             |                                 |
|----------------------------------------|--------------|--------------|-----------------------------|------------------------------|------------------------------------|----------------------------|---------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                        |              |              |                             | ~                            | 1                                  |                            |               |                               | Checked By: S. Demmers                                                                                                         | Boring: <b>B-27</b>             |
| Deptn (Feet)                           | Samples      | Bulk Samples | Penetration<br>Blows / Foot | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%) | % Passing<br>No. 200 Sieve | Graphic Log   | nscs                          | MATERIAL DESCRIPTION                                                                                                           | REMARKS                         |
| 1 –                                    |              |              | 50/<br>3"                   | _                            |                                    |                            |               | SM                            | Silty SAND - orange brown, moist, very dense, fine to medium grained                                                           |                                 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9   |              |              | 57                          |                              |                                    |                            |               |                               | moderately cemented                                                                                                            |                                 |
| 0-<br>1-<br>2-<br>3-<br>4-             |              |              | 50/<br>3"                   |                              |                                    |                            |               | SP-SM                         | Poorly Graded SAND - yellow brown, moist, dense,                                                                               |                                 |
| 5—<br>6—<br>7—<br>8—<br>9—             | X            |              | 30                          |                              |                                    |                            |               |                               | fine to medium grained, with silt                                                                                              |                                 |
| 21-<br>22-<br>23-<br>24-<br>25-<br>26- |              |              | 31                          |                              |                                    |                            |               |                               | Boring terminated at approximately 21.5 feet bgs<br>Borehole backfilled with soil cuttings<br>No groundwater encountered       |                                 |
| 27-<br>8-<br>9-                        |              |              |                             |                              |                                    |                            |               |                               |                                                                                                                                |                                 |
| Drill<br>Drill                         | ling<br>ling | Me<br>Eq     | thod<br>uipm                | Holle                        | Dave's D<br>ow Stem<br>Mobile 6    | Auge                       | r             |                               | Surface Elevation:<br>Sample Method: 2.5-inch I.D. Modified<br>Groundwater Depth: Not Encountered<br>Completion Depth: 20 Feet | & 1.5-inch I.D. SPT Split Spoon |

| A S                                                 | S            | 0            | С                           | IÂ                           | T E S                                       | Telep<br>Fax:              | hone:<br>559-4 | 93650<br>559-4<br>97-288 | 97-2880<br>6 <b>Logged By:</b> J. Coburn                                                                                     |                      |
|-----------------------------------------------------|--------------|--------------|-----------------------------|------------------------------|---------------------------------------------|----------------------------|----------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                     |              |              |                             |                              | 1                                           | 1                          |                |                          | Checked By: S. Demmers                                                                                                       | Boring: <b>B-39</b>  |
| Depth (Feet)                                        | Samples      | Bulk Samples | Penetration<br>Blows / Foot | In-Situ Dry Density<br>(pcf) | In-Situ<br>Moisture Content<br>(%)          | % Passing<br>No. 200 Sieve | Graphic Log    | nscs                     | MATERIAL DESCRIPTION                                                                                                         | REMARKS              |
| 1 -<br>2 -<br>3 -<br>4 -<br>5 -                     |              |              | 45                          | 116.7                        | 4.2                                         |                            |                | SC                       | Clayey SAND - light red brown, moist, fine to medium<br>grained<br>very stiff                                                |                      |
| 6 -<br>7 -<br>8 -<br>9 -<br>10-                     | $\times$     |              | 80                          |                              |                                             |                            |                |                          | weak cementation, hard                                                                                                       |                      |
| 11–<br>12–<br>13–<br>14–<br>15–                     | $\checkmark$ |              | 50/<br>3"<br>55             | 112.4                        | 10.1                                        |                            |                |                          | moderate cementation                                                                                                         |                      |
| 16<br>17-<br>18-<br>19-<br>20-<br>21-<br>22-<br>23- |              |              |                             |                              |                                             |                            |                |                          | <br>Boring terminated at approximately 16.5 feet bgs<br>Borehole backfilled with soil cuttings<br>No groundwater encountered |                      |
| 24 —<br>25 —<br>26 —<br>27 —<br>28 —<br>29 —        |              |              |                             |                              |                                             |                            |                |                          |                                                                                                                              |                      |
| Drilli                                              | ing          | Met          | hod                         | Hollo                        | ave's D<br>ow Stem<br>lobile 6 <sup>-</sup> | Auge                       | r              |                          | Surface Elevation:<br>Sample Method: 2.5-inch I.D. Modified & 1.5-inch<br>Groundwater Depth: Not Encountered                 | I.D. SPT Split Spoon |

| ASSO                                                                  | Project: Madera New High School       Page 1 of         BSK Associates       550 W Locust Ave         Fresno CA, 93650       Location: Madera, CA         Project No.: G16-159-11F       Logged By: J. Coburn |                                                                  |               |      |                                                                                                                                                                                                                                                                                                                                                                     |                             |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
|                                                                       | Checked By: S. Demmers Boring: B-40                                                                                                                                                                           |                                                                  |               |      |                                                                                                                                                                                                                                                                                                                                                                     |                             |  |  |
| Depth (Feet)<br>Samples<br>Bulk Samples                               | Penetration<br>Blows / Foot<br>In-Situ Dry Density<br>(pcf)                                                                                                                                                   | In-Situ<br>Moisture Content<br>(%)<br>% Passing<br>No. 200 Sieve | Graphic Log   | NSCS | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                | REMARKS                     |  |  |
| $ \begin{array}{c} -1 $                                               | 74       26       46       42                                                                                                                                                                                 |                                                                  |               | SM   | Clayey SAND - light brown, moist, fine to medium<br>grained<br>dense<br>Sandy CLAY - dark red brown, moist, fine grained<br>sand<br>very stiff<br>brown, hard<br>Silty SAND - brown, fine grained, moist, trace of clay<br>medium dense<br>Boring terminated at approximately 16.5 feet bgs<br>Borehole backfilled with soil cuttings<br>No groundwater encountered |                             |  |  |
| Drilling Co<br>Drilling Me<br>Drilling Eq<br>Date Starte<br>Date Comp | uipment: Mo                                                                                                                                                                                                   | w Stem Auge<br>obile 61                                          | <u>،</u><br>۲ |      | Surface Elevation:<br>Sample Method: 2.5-inch I.D. Modified & 1.5<br>Groundwater Depth: Not Encountered<br>Completion Depth: 15 Feet<br>Borehole Diameter: 8"                                                                                                                                                                                                       | i-inch I.D. SPT Split Spoon |  |  |

# **APPENDIX B**

# LABORATORY TESTING



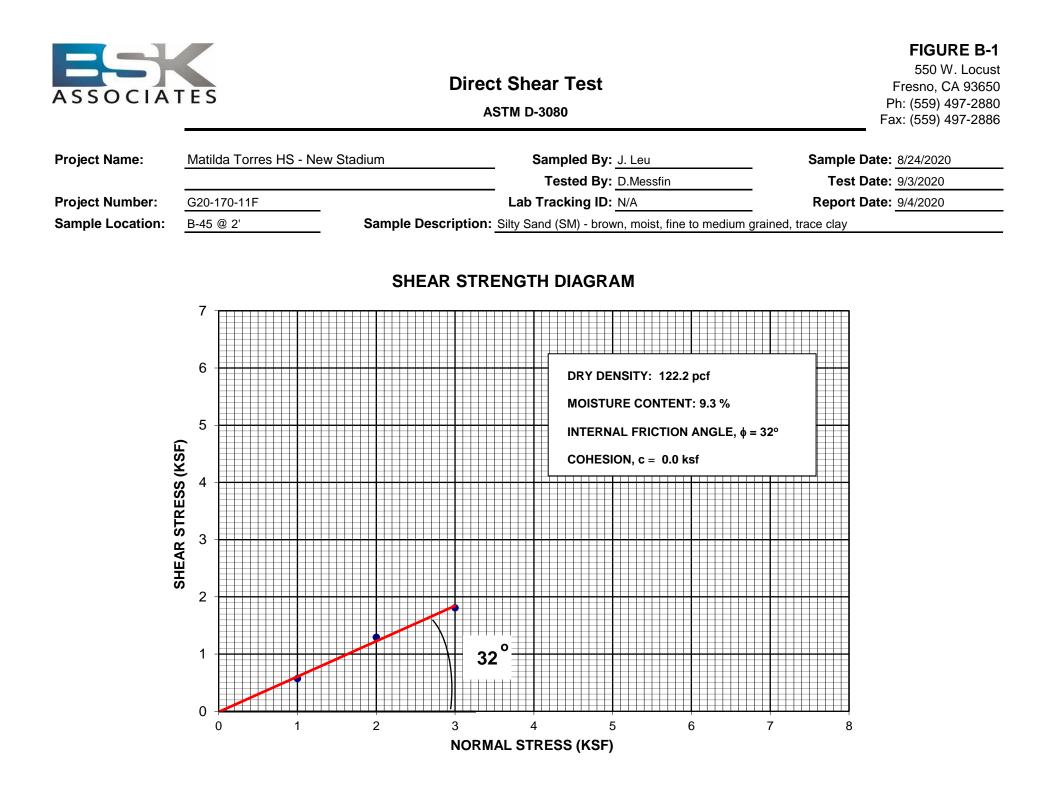
#### **APPENDIX B**

#### LABORATORY TESTING RESULTS

#### **Moisture-Density Tests**

The field moisture content, as a percentage of dry weight of the soils, was determined by weighing the samples before and after oven drying in accordance with ASTM D2216 test procedures. Dry densities, in pounds per cubic foot, were also determined for undisturbed core samples in general accordance with ASTM D 2937 test procedures. Test results are presented on the boring logs in Appendix A.

#### **Direct Shear Test**


One (1) Direct Shear Test was performed on a relatively undisturbed soil samples obtained at the time of drilling in the area of planned construction. The tests were conducted to determine the soil strength characteristics. The standard test method is ASTM D3080, Direct Shear Test for Soil under Consolidated Drained Conditions. The direct shear test results are presented graphically on Figure B-1.

#### Soil Corrosivity

One (1) Corrosivity Evaluation was performed on a bulk soil sample obtained at the time of drilling in the area of planned construction. The soil was evaluated for pH and minimum resistivity (CT 643), sulfate ion concentration (CT 417), and chloride ion concentration (CT 422). The test results are presented in Table B-1.

| Table B-1: Summary of Corrosion Test Results |     |              |               |                             |  |  |  |  |
|----------------------------------------------|-----|--------------|---------------|-----------------------------|--|--|--|--|
| Sample Location                              | рН  | Sulfate, ppm | Chloride, ppm | Minimum Resistivity, ohm-cm |  |  |  |  |
| B-1 @ 0-5 feet bgs                           | 5.8 | 19.0         | 13.0          | 2,460                       |  |  |  |  |
| B-23 @ 0-5 feet bgs                          | 6.4 | 30.0         | 19.0          | 3,480                       |  |  |  |  |
| B-44 @ 0-5 feet bgs                          | 8.3 | 19           | 6.3           | -                           |  |  |  |  |





# **APPENDIX C**

## **GEOLOGIC AND SEISMIC HAZARDS ASSESSMENT**



## APPENDIX C GEOLOGIC AND SEISMIC HAZARDS ASSESSMENT REPORT NEW MADERA HIGH SCHOOL STADIUM MADERA, CALIFORNIA Table of Contents

| C1.    | INTRODUCTION                                                           |        |
|--------|------------------------------------------------------------------------|--------|
| C1.1   | Purpose and Scope of Services                                          |        |
| C1.2   | Site Location                                                          |        |
| C1.3   | Site Topography2                                                       | )      |
| C1.4   | Groundwater Conditions                                                 | )      |
| C2.0   | GEOLOGIC SETTING                                                       | )      |
| C2.1   | Subsurface Conditions                                                  | 5      |
| C3.0   | GEOLOGIC/SEISMIC HAZARDS                                               | 5      |
| C3.1   | Fault Rupture Hazard Zones in California                               | 5      |
| C3.2   | State of California Seismic Hazard Zones (Liquefaction and Landslides) | 5      |
| C3.3   | Slope Stability and Potential for Slope Failure                        | ļ      |
| C3.4   | Flood and Inundation Hazards4                                          |        |
| C3.4.1 | Flood Hazards4                                                         |        |
| C3.4.2 | Inundation Hazards - Dams4                                             |        |
| C3.5   | Volcanic Hazards4                                                      | ļ      |
| C3.6   | Corrosion4                                                             | ļ      |
| C3.7   | Expansive Soils4                                                       |        |
| C3.8   | Land Subsidence4                                                       |        |
| C4.    | SEISMIC HAZARD ASSESSMENT                                              | )      |
| C4.1   | Seismic Source Deaggregation5                                          | ,<br>) |
| C4.3   | Earthquake Ground Motion, 2019 California Building Code                | )      |
| C4.3.1 | Site Class6                                                            | )      |
| C4.3.2 | Seismic Design Criteria6                                               | )      |
| C4.3.3 | Geometric Mean Peak Ground Acceleration1                               |        |
| C4.4   | Seismically Induced Ground Failure1                                    |        |
| C4.4.1 | Liquefaction1                                                          |        |
| C4.4.2 | Lateral Spread2                                                        | )      |
| C4.4.3 | Dynamic Compaction/Seismic Settlement2                                 |        |
| С5.    | REFERENCES                                                             | 5      |

## **Figures**

- Figure C-1 Area Topographic Map
- Figure C-2 Historical Depth to Groundwater Map
- Figure C-3 Site Map
- Figure C-4 Geologic Map
- Figure C-5 Cross Sections
- Figure C-6 FEMA Flood Zones
- Figure C-7 Regional Fault Map
- Figure C-8 Earthquake Epicenter Map
- Figure C-9 Liquefaction Analysis

#### C1. INTRODUCTION

This report presents the geologic and seismic hazards assessment prepared in accordance with the 2019 California Building Code (CBC), CCR Title 24, Chapters 16A and 18A requirements for a Geotechnical/Engineering Geologic Report. The assessment was performed in conformance with California Geological Survey (CGS) Note 48 (2019).

#### C1.1 Purpose and Scope of Services

The purpose of the geologic and seismic hazards assessment is to provide the Client with an evaluation of potential geologic or seismic hazards which may be present at the site or due to regional influences. This report is an update of BSK's 2016 report and is intendent to include the new stadium area. BSK's scope of services for this assessment included the following:

- 1. Review of published geologic literature, and current and past investigations at the site;
- 2. Evaluation of the data collected and preparation of geologic cross sections;
- 3. Evaluation of potential geologic hazards affecting the site;
- 4. Determination of Site Class and seismic design parameters.

The observations and conclusions presented in this report specifically exclude the assessment of environmental characteristics, particularly those involving hazardous substances, and a high-pressure pipeline risk evaluation.

#### C1.2 Site Location

The site is located at the southeast intersection of Martin Street and Road 26 in Madera, Madera County, California.

The site coordinates of the new stadium are:

Latitude 36.9903<sup>o</sup>N Longitude 120.0699<sup>o</sup>W

The surrounding area is primarily rural residential with some farmland. The adjacent properties surrounding the Site are mostly residential with the existing Jack G. Desmond Middle School located east of the Site.



## C1.3 Site Topography

As shown on Figure C-1, the site and surrounding area topography is relatively flat with a ground surface elevation of 275 feet at the southwest portion of the Site, to 280 feet in the northeast portion of the Site, USGS datum (NAVD27). Based on data from the USGS National Elevation Dataset, the site elevation referenced to a more current elevation datum (NAVD88) is approximately 276 feet at the southwest portion of the Site, to 284 feet in the northeast portion of the Site.

## C1.4 Groundwater Conditions

The Site is within the Madera sub-basin of the San Joaquin Basin Hydrologic Study Area. This includes approximately the southern two-thirds of the Great Valley. Within the Study Area, 39 groundwater basins and areas of potential storage have been identified. The boundaries of these areas are based largely on hydrologic as well as political considerations.

Groundwater was not observed at the time of our borings were drilled to depths of 51.5 feet bgs. Due to the brief time the borehole was left open, this may not represent a fully stabilized groundwater condition. Please note that the groundwater level may fluctuate both seasonal and from year to year due to variations in rainfall, temperature, pumping from wells and possibly as the result of other factors that were not evident at the time of our investigation.

To ascertain groundwater levels for the area during other time periods, groundwater elevation data from the California Department of Water Resources (DWR) were obtained for the period 1945 to 2010. The water level hydrograph from well 11S17E02Q001M is presented on Figure C-2. The hydrograph indicates that the shallowest historic depth to groundwater in the general area of the site was approximately 51 feet bgs (1945).

## C2.0 GEOLOGIC SETTING

The site is located in the Great Valley geomorphic province. The site is located in the structural region identified by the U.S.G.S. (Bartow, 1991) as the San Joaquin Valley portion of the southern Sierran block. This area forms a broad syncline with deposits of marine and overlying continental sediments, Jurassic to Holocene in age. The thickness of the sediments increases to the west and reach a thickness of as much as 20,000-feet on the west side of the San Joaquin Valley syncline. East of the site, the relatively flat geomorphology transitions into the foothills of Sierra Nevada, which generally consist of pre-Cretaceous metamorphic rocks, Mesozoic ultramafic rocks, and Mesozoic granitic rocks.

As shown on Figure C-4, the site is on Pleistocene nonmarine deposits which are the result of the development of older alluvial fans from the Sierra Nevada Mountains to the east.



Nearby significant active faults include the Great Valley Fault located approximately 39 miles west of the site and the San Andreas Fault located approximately 66 miles west of the Site.

## C2.1 Subsurface Conditions

Subsurface conditions are described in the 2016 geotechnical investigation report prepared by BSK Associates (BSK) and to which this geologic and seismic hazards report is appended. As shown on Figure C-3, the site was the subject of a 2016 field investigation of 41 soil borings completed to 51.5 feet bgs and an August 2020 field investigation of 5 additional soil borings in the stadium area. The underlying stratigraphy consists of mostly clayey/silty sand and sandy silt to depths of 8 to 14 feet bgs. Below this to a layers of sand, silty sand, silty clay and silt was encountered. Figure C-5 presents geologic cross sections showing the current site surface topography and the subsurface conditions inferred the soil borings completed at the site.

## C3.0 GEOLOGIC/SEISMIC HAZARDS

The types of geologic and seismic hazards assessed include surface ground fault rupture, liquefaction, seismically induced settlement, slope failure, flood hazards and inundation hazards.

## C3.1 Fault Rupture Hazard Zones in California

The purpose of the Alquist-Priolo Geologic Hazards Zones Act, as summarized in CDMG Special Publication 42 (SP 42), is to "prohibit the location of most structures for human occupancy across the traces of active faults and to mitigate thereby the hazard of fault-rupture." As indicated by SP 42, "the State Geologist is required to delineate "earthquake fault zones" (EFZs) along known active faults in California. Cities and counties affected by the zones must regulate certain development 'projects' within the zones. They must withhold development permits for sites within the zones until geologic investigations demonstrate that the sites are not threatened by surface displacement from future faulting.

The Site is not located in a Fault-Rupture Hazard Zone. The closest Fault-Rupture Hazard Zone is associated with the Ortigalita Fault, approximately 47 miles west of the Site.

## C3.2 State of California Seismic Hazard Zones (Liquefaction and Landslides)

Zones of Required Investigation referred to as "Seismic Hazard Zones" (SHZ) in CCR Article 10, Section 3722, are areas shown on Seismic Hazard Zone Maps where site investigations are required to determine the need for mitigation of potential liquefaction and/or earthquake-induced landslide ground displacements.



The site is within the Madera 7.5 Minute Quadrangle and there are no mapped areas that have Seismic Hazard Zones in the project area.

## C3.3 Slope Stability and Potential for Slope Failure

The project area is essentially flat and the potential hazard due to landslides from adjacent properties is not applicable.

## C3.4 Flood and Inundation Hazards

An evaluation of flooding at the site includes review of potential hazards from flooding during periods of heavy precipitation and flooding due to a catastrophic dam breach from up-gradient surface impoundments.

#### C3.4.1 Flood Hazards

Federal Emergency Management Agency (FEMA) flood hazard data was obtained to present information regarding the potential for flooding at the Site. As shown on Figure C-6 according to FEMA D-Firm GIS data, dated 9/26/2016, the Site lies in Zone X area of minimal flooding, outside the 100-year and 500-year floodplains.

#### C3.4.2 Inundation Hazards - Dams

As shown on Figure C-6, the Site is located in the pathway of inundation from a catastrophic breach of Hensley Lake/Hidden Dam Inundation. (Dam Inundation GIS data from California Emergency Management Agency, dated 2013)

## C3.5 Volcanic Hazards

According to USGS Bulletin 1847, dated 1989, the site is not located in an area which would be subject to hazards from volcanic eruptions (Miller, 1989).

## C3.6 Corrosion

Please refer to the section titled "Corrosion Assessment" in the geotechnical report for discussion of the corrosivity of the site soils.

## C3.7 Expansive Soils

As discussed in the geotechnical report, the near-surface soil have a very low to expansion potential.

#### C3.8 Land Subsidence

Four types of subsidence are known to occur in the San Joaquin Valley (Galloway, 1999). In order of decreasing magnitude they are:



(1) Subsidence caused by aquifer system compaction due to the lowering of ground-water levels by sustained ground-water overdraft;

- (2) Subsidence caused by the hydrocompaction of moisture-deficient deposits above the water table;
- (3) Subsidence related to fluid withdrawal from oil and gas fields; and
- (4) Subsidence related to crustal neotectonic movements.

The site is not located in an area known to be susceptible to subsidence due to petroleum or groundwater withdrawal. The site is not located in an area in which soils are known to be impacted by hydrocompaction.

## C4. SEISMIC HAZARD ASSESSMENT

## C4.1 Seismic Source Deaggregation

Figures C-7 presents fault maps showing the major faults that may impact the site in the future. Seismically induced ground motion at a site can be caused by earthquakes on any of the sources surrounding the site. Deaggregation of the seismic hazard was performed by using the USGS Interactive Deaggregation website. The deaggregation determination, at the maximum considered earthquake (MCE) hazard level, results in distance, magnitude and epsilon (ground-motion uncertainty) for each source that contributes to the hazard. Each source has a corresponding epsilon, which is the probabilistic value relative to the mean value of ground motion for that source.

Table C-1 below lists the result of deaggregation based on a probabilistic model developed by the USGS. The most extreme seismic source with the highest magnitude that contributes to the peak ground acceleration (PGA) is a magnitude 8.14 earthquake from the San Andreas fault. For liquefaction and seismic settlement, the modal magnitude (Mw) of 5.5 would be appropriate for probabilistic input parameter that is consistent with the design earthquake ground motion.

| TABLE C-1<br>SEISMIC HAZARD DEAGGREGATION<br>MAXIMUM CONSIDERED EARTHQUAKE |                         |                  |                   |                          |  |  |  |  |
|----------------------------------------------------------------------------|-------------------------|------------------|-------------------|--------------------------|--|--|--|--|
| Seismic Source                                                             | Percent<br>Contribution | Distance<br>(km) | Magnitude<br>(Mw) | Epsilon<br>(Mean Values) |  |  |  |  |
| PGA Deaggregation (USGS 2008)                                              |                         |                  |                   |                          |  |  |  |  |
| CA Compr. crustal gridded                                                  | 90                      | -                | 6.02              | -                        |  |  |  |  |
| San Andreas Fault                                                          | 2.6                     | 105              | 8.14              | 2.16                     |  |  |  |  |
| Mean                                                                       | -                       | 18.2             | 6.18              | 1.08                     |  |  |  |  |
| Modal                                                                      | 9                       | 10.4             | 5.5               | 0.89                     |  |  |  |  |



Table C-2 provides the location, earthquake magnitude, site to earthquake distances, dates and the resulting site peak horizontal acceleration for the period 1800 to 2016. Figure C-6 presents historical earthquake magnitudes and locations relative to the site.

The Table C-2 shows that the site has experienced mean plus one sigma peak horizontal acceleration up to 0.29g from a 4.6 magnitude earthquake on a local unknown fault. In general the site has been subjected to relatively low intensity ground motion, primarily from large earthquakes on distance faults and low magnitude earthquakes closer to the site.

|      | TABLE C-2<br>HISTORIC EARTHQUAKES WITHIN 100 MILES OF THE SITE<br>GROUND MOTION GREATER THAN 0.05G |           |           |       |            |                  |             |  |  |  |
|------|----------------------------------------------------------------------------------------------------|-----------|-----------|-------|------------|------------------|-------------|--|--|--|
| File | Latitude                                                                                           | Longitude | Date      | Depth | Earthquake | Site             | Distance    |  |  |  |
| Code | (North)                                                                                            | (West)    |           | (km)  | Magnitude  | Acceleration (g) | mi (km)     |  |  |  |
| MGI  | 37.000                                                                                             | 120.070   | 9/12/1928 | 0     | 4.6        | 0.29             | 0.7( 1.1)   |  |  |  |
| BRK  | 36.220                                                                                             | 120.290   | 5/2/1983  | 0     | 6.7        | 0.10             | 54.6( 87.8) |  |  |  |
| T-A  | 36.830                                                                                             | 121.570   | 10/18/180 | 0     | 7.0        | 0.09             | 83.5(134.5) |  |  |  |
| BRK  | 36.220                                                                                             | 120.400   | 7/22/1983 | 0     | 6.0        | 0.07             | 56.2(90.5)  |  |  |  |
| DMG  | 36.400                                                                                             | 121.000   | 04/12/188 | 0     | 6.2        | 0.07             | 65.7(105.7) |  |  |  |
| PAS  | 37.556                                                                                             | 118.791   | 5/25/1980 | 6.4   | 6.5        | 0.07             | 80.4(129.4) |  |  |  |
| PAS  | 37.464                                                                                             | 118.823   | 5/27/1980 | 2.4   | 6.3        | 0.07             | 75.9(122.2) |  |  |  |
| PAS  | 37.608                                                                                             | 118.821   | 5/25/1980 | 3.7   | 6.4        | 0.07             | 80.8(130.0) |  |  |  |
| DMG  | 35.750                                                                                             | 120.250   | 3/10/1922 | 0     | 6.5        | 0.07             | 86.2(138.7) |  |  |  |
| DMG  | 37.500                                                                                             | 118.500   | 04/11/187 | 0     | 6.6        | 0.07             | 93.2(150.0) |  |  |  |
| DMG  | 37.250                                                                                             | 121.750   | 7/1/1911  | 0     | 6.6        | 0.06             | 94.2(151.6) |  |  |  |
| PAS  | 36.151                                                                                             | 120.049   | 8/4/1985  | 6     | 5.8        | 0.06             | 58.0(93.3)  |  |  |  |
| PAS  | 36.286                                                                                             | 120.413   | 10/25/198 | 6     | 5.6        | 0.06             | 52.2( 84.0) |  |  |  |
| DMG  | 37.000                                                                                             | 121.500   | 06/20/189 | 0     | 6.2        | 0.06             | 78.9(126.9) |  |  |  |
| BRK  | 36.220                                                                                             | 120.290   | 5/2/1983  | 0     | 5.6        | 0.06             | 54.6( 87.8) |  |  |  |
| T-A  | 36.750                                                                                             | 119.750   | 08/16/186 | 0     | 4.3        | 0.06             | 24.2( 39.0) |  |  |  |
| DMG  | 36.900                                                                                             | 121.200   | 03/06/188 | 0     | 5.7        | 0.06             | 62.7(100.8) |  |  |  |
| PAS  | 37.470                                                                                             | 118.597   | 11/23/198 | 6     | 6.2        | 0.06             | 87.6(141.0) |  |  |  |

## C4.3 Earthquake Ground Motion, 2019 California Building Code

## C4.3.1 Site Class

Based on Section 1613A.2.2 of the 2019 California Building Code (CBC), the Site shall be classified as Site Class A, B, C, D, E or F based on the Site soil properties and in accordance with Chapter 20 of ASCE 7-16. Based on the soil condition at depth encountered from previous reports, the Site is Class D (15< N < 50).

## C4.3.2 Seismic Design Criteria

The 2019 California Building Code (CBC) utilizes ground motion based on the Risk-Targeted Maximum Considered Earthquake ( $MCE_R$ ) that is define in the 2019 CBC as the most severe earthquake effects



considered by this code, determined for the orientation that results in the largest maximum response to horizontal ground motions and with adjustment for targeted risk. Ground motion parameters in the 2019 CBC are based on ASCE 7-10, Chapter 11.

The United States Geologic Survey (USGS) has prepared maps presenting the Risk-Targeted MCE spectral acceleration (5% damping) for periods of 0.2 seconds ( $S_s$ ) and 1.0 seconds ( $S_1$ ). The values of  $S_s$  and  $S_1$  can be obtained from the OSHPD Seismic Design Maps Application available at: <u>https://seismicmaps.org/</u>

Table C-3 below presents the spectral acceleration parameters produced for Site Class D by the USGS Ground Motion Parameter Application and Chapter 16 of the 2019 CBC based on ASCE 7-16.

| TABLE C-3<br>SPECTRAL ACCELERATION PARAMETERS |                         |                                                          |                         |  |  |  |  |  |  |
|-----------------------------------------------|-------------------------|----------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| RISK TARGETED MAXIMUM CONSIDERED EARTHQUAKE   |                         |                                                          |                         |  |  |  |  |  |  |
| Criteria                                      | l v                     | /alue                                                    | Reference               |  |  |  |  |  |  |
| MCE Mapped Spectral Acceleration (g)          | S <sub>s</sub> = 0.581  | S <sub>1</sub> = 0.230                                   | USGS Mapped Value       |  |  |  |  |  |  |
| Site Coefficients (Site Class D)              | F <sub>a</sub> = 1.335  | $F_v = Null^1 (2.15)^2$                                  | ASCE Table 11.4         |  |  |  |  |  |  |
| Site Adjusted MCE Spectral Acceleration (g)   | S <sub>MS</sub> = 0.773 | S <sub>M1</sub> = Null <sup>1</sup> (0.495) <sup>2</sup> | ASCE Equations 11.4.1-2 |  |  |  |  |  |  |
| Design Spectral Acceleration (g)              | S <sub>DS</sub> = 0.517 | $S_{D1} = Null^{1}(0.330)^{2}$                           | ASCE Equations 11.4.3-4 |  |  |  |  |  |  |
| Site Short Period - T <sub>s</sub> (Seconds)  | Ts                      | = 0.638                                                  | $Ts = S_{D1}/S_{DS}$    |  |  |  |  |  |  |
| Site Long-Period - T <sub>L</sub> (Seconds)   | Т                       | L = 12                                                   | USGS Mapped Value       |  |  |  |  |  |  |

<sup>&</sup>lt;sup>2</sup> Values from ASCE 7-16 supplement, shall only be used to calculate Ts



<sup>&</sup>lt;sup>1</sup> Requires site-specific ground motion procedure or exception as per ASCE 7-16 Section 11.4.8

#### C4.3.3 Geometric Mean Peak Ground Acceleration

As per Section 1803A.5.12 of the CBC, peak ground acceleration (PGA) utilized for dynamic lateral earth pressures and liquefaction, shall be based on a site-specific study (ASCE 7-16, Section 21.5) or ASCE 7-16, Section 11.8.3. The USGS Ground Motion Parameter Application based on ASCE 7-16, Section 11.8.3 produced the values shown in Table C-4 based on Site Class D.

| TABLE C-4<br>GEOMETRIC MEAN PEAK GROUND ACCELERATION<br>MAXIMUM CONSIDERED EARTHQUAKE |                          |                       |  |  |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------|-----------------------|--|--|--|--|--|
| Criteria                                                                              | Value                    | Reference             |  |  |  |  |  |
| Mapped Peak Ground Acceleration (g)                                                   | PGA = 0.251              | USGS Mapped Value     |  |  |  |  |  |
| Site Coefficients (Site Class D)                                                      | F <sub>PGA</sub> = 1.35  | ASCE Table 11.8-1     |  |  |  |  |  |
| Geometric Mean PGA (g)                                                                | PGA <sub>M</sub> = 0.338 | ASCE Equations 11.8-1 |  |  |  |  |  |

#### C4.4 Seismically Induced Ground Failure

#### C4.4.1 Liquefaction

Settlement of the ground surface with consequential differential movement of structures is a major cause of seismic damage for buildings founded on alluvial deposits. Vibration settlement of relatively dry and loose granular deposits beneath structures can be readily induced by the horizontal components of ground shaking associated with even moderate intensity earthquakes. Silver and Seed (1971) have demonstrated that settlement of dry sands due to cyclic loading is a function of 1) the relative density of the soil; 2) the magnitude of the cyclic shear stress; and 3) the number of strain cycles. As indicated above, seismically-induced ground settlement can also occur due to the liquefaction of relatively loose, saturated granular deposits.

In order for liquefaction triggering to occur due to ground shaking, it is generally accepted that four conditions will exist:

- The subsurface soils are in a relatively loose state
- The soils are saturated
- The soils have low plasticity
- Ground shaking is of sufficient intensity to act as a triggering mechanism

In addition, after soil liquefies, dissipation of the excess pore pressures can produce volume changes within the liquefied soil layer, which can result in ground surface settlement.



The current and historical depth to groundwater is relatively deep (>50 feet bgs), therefore the liquefaction potential at the Site is low.

#### C4.4.2 Lateral Spread

Lateral spreading is a potential hazard commonly associated with liquefaction where extensional ground cracking and settlement occur as a response to lateral migration of subsurface liquefiable material. These phenomena typically occur adjacent to free faces such as slopes and creek channels. The potential for liquefaction is low, therefore the potential for lateral spreading to take place at the site is low.

#### C4.4.3 Dynamic Compaction/Seismic Settlement

Another type of seismically induced ground failure, which can occur as a result of seismic shaking, is dynamic compaction, or seismic settlement. Such phenomena typically occur in unsaturated, loose granular material or uncompacted fill soils.

A liquefaction/seismic settlement analysis was performed using the program Liquefy Pro version 5.8k using soil boring data from B-8. Input parameters for the liquefaction and settlement analysis were based upon:

- Soil densities and fines content estimated from boring data.
- PGA based upon the geometric mean peak ground acceleration or 0.338g.
- Magnitude 5.5 of controlling earthquake from Deaggregation of the seismic hazard.
- Assumed depth to groundwater of 51 feet bgs from historical high.
- A Factor-of-Safety of 1.3 was used for analysis.

Based on the analysis the total estimated settlement is 0.17 inch with a differential settlement of 0.09 inch.



#### C5. REFERENCES

American Society of Civil Engineers, ASCE 7-16 Minimum Design Loads for Buildings and Other Structures, 2016.

Bartow, J.A., 1991, The Cenozoic Evolution of the San Joaquin Valley, California, USGS Professional Paper 1501.

Blake, T.F., 2000, EQSEARCH, Version 3.0, A Computer Program For The Estimation Of Peak Acceleration From California Historical Earthquake Catalogs.

Borchers, J.W., Carpenter, M., 2014, Land Subsidence from Groundwater Use in California, California Water Foundation Summary Report, April 2014

California Building Code, Title 24, 2019, also known as, the California Code of Regulations, (CCR), Title 24, Part 1 and Part 2.

California Department of Water Resources, Groundwater Level Data, http://wdl.water.ca.gov/gw/.

California Geological Survey, November 2019, Note 48, Checklist for the Review of Engineering Geology and Seismology Reports for California Public Schools, Hospitals, and Essential Services Buildings.

California Geological Survey, Note 49, 2002, Guidelines for Evaluating The Hazard Of Surface Fault Rupture.

California Division of Mines and Geology, 1997, Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117.

Federal Emergency Management Agency (FEMA, 2013), FEMA Flood Hazard Layer, 06039C-NFHL, 9/26/2016.

Galloway, D., Jones, D.R., Ingebritsen, S.E., 1999, Land Subsidence in the United States, USGS Circular 1182

Hart, E.W., Bryant W.A., 2007, Fault-Rupture Hazard Zones In California, Alquist-Priolo Earthquake Fault Zoning Act, With Index to Earthquake Fault Zones Maps, Interim Revision 2007, California Geological Survey Special Publication 42.



Idriss, I.M., and Boulanger, R.W., 2008, Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute, Berkeley, California.

Ishihara, K., 1985, Stability of Natural Deposits During Earthquakes, Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA, Volume 1.

Miller, C.D., 1989, Potential Hazards from Volcanic Eruptions in California, U. S. Geological Survey Bulletin 1847.

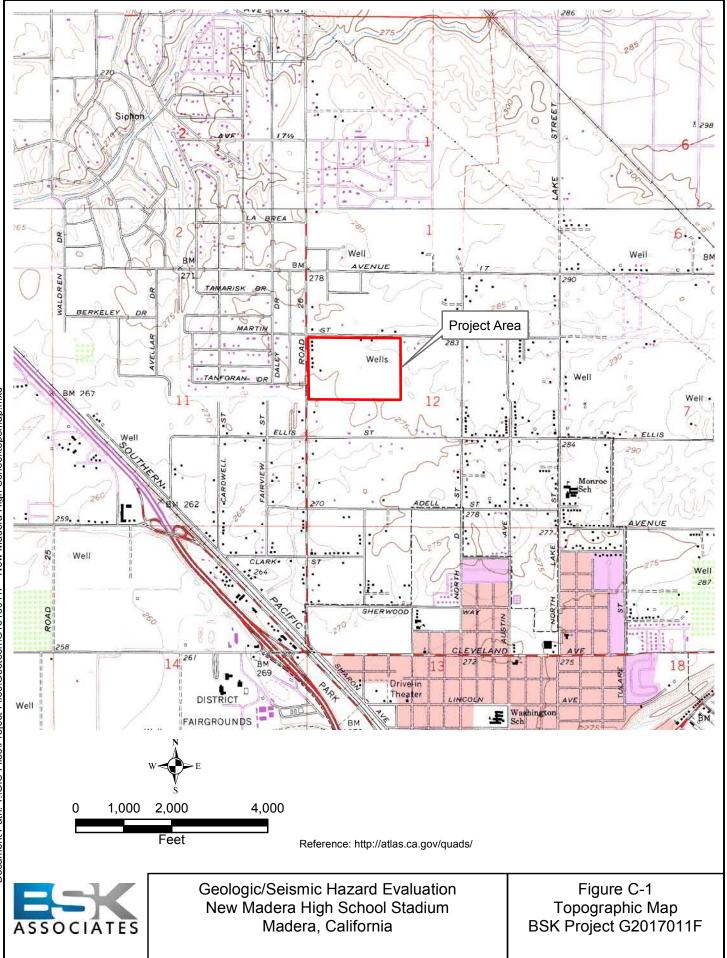
Seed, H. B., and Idriss, I.M., 1971, Simplified Procedure for Evaluating Soil Liquefaction Potential: American Society of Civil Engineering, Journal of Soil Mechanics and Foundations Division, SM9, Sept. 1971.

Seed, H.B. and Idriss, I.M., 1982, Ground Motions and Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute Monograph, Berkeley, California.

Seed, R. B., Cetin, K. O. et al, 2003, Recent Advances In Soil Liquefaction Engineering: A Unified And Consistent Framework, EERC 2003-06.

Silver, M. L., and Seed, H. B., 1971, Volume Changes in Sands During Cyclic Loading, Journal of Soil Mechanics, Foundation Division, ASCE, 97(9), 1171-1182.

Southern California Earthquake Center, 1999, Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction Hazards in California, G.R. Martin and M. Lew, Co-chairs.


Stewart, J.P., Blake, T.F., and Hollingsworth, R.A., 2002, Recommended Procedures for Implementation of DMG Special Publication 117 Guidelines For Analyzing and Mitigating Landslide Hazards in California.

Stewart, J.P. and Whang, D.H., 2003, Simplified Procedure to Estimate Ground Settlement from Seismic Compression in Compacted Soils, 2003 Pacific Conference on Earthquake Engineering.

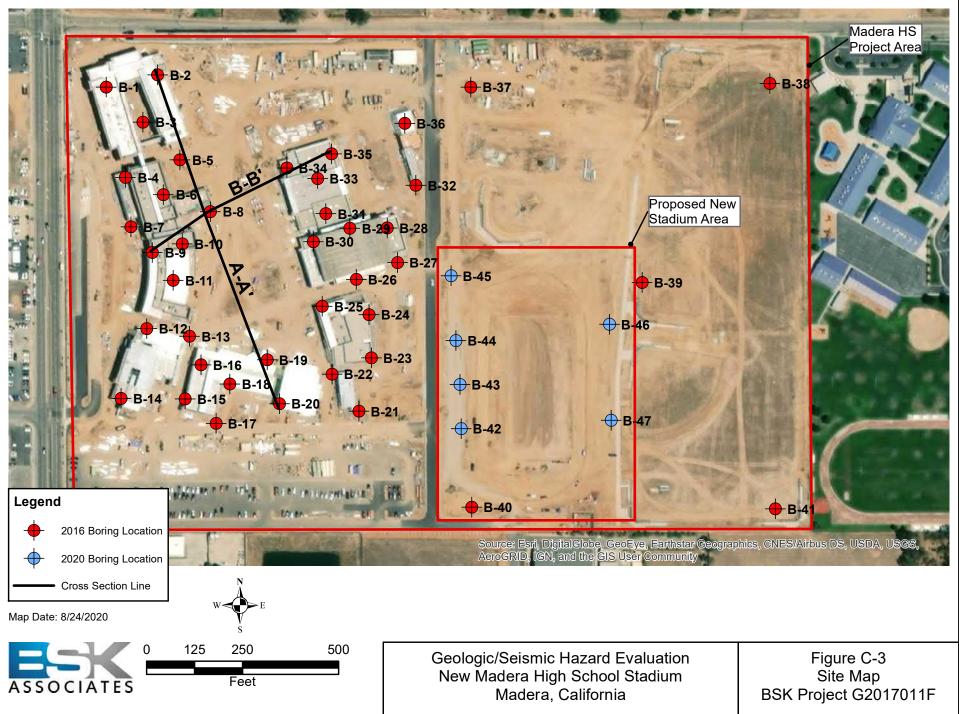
USGS/OSHPD, U.S. Seismic Design Maps, https://seismicmaps.org/

USGS, National Seismic Hazard Model (NSHM) Earthquake Catalogs, 2014 NSHM Catalogs, USGS, <u>https://github.com/usgs/nshmp-haz-catalogs</u>

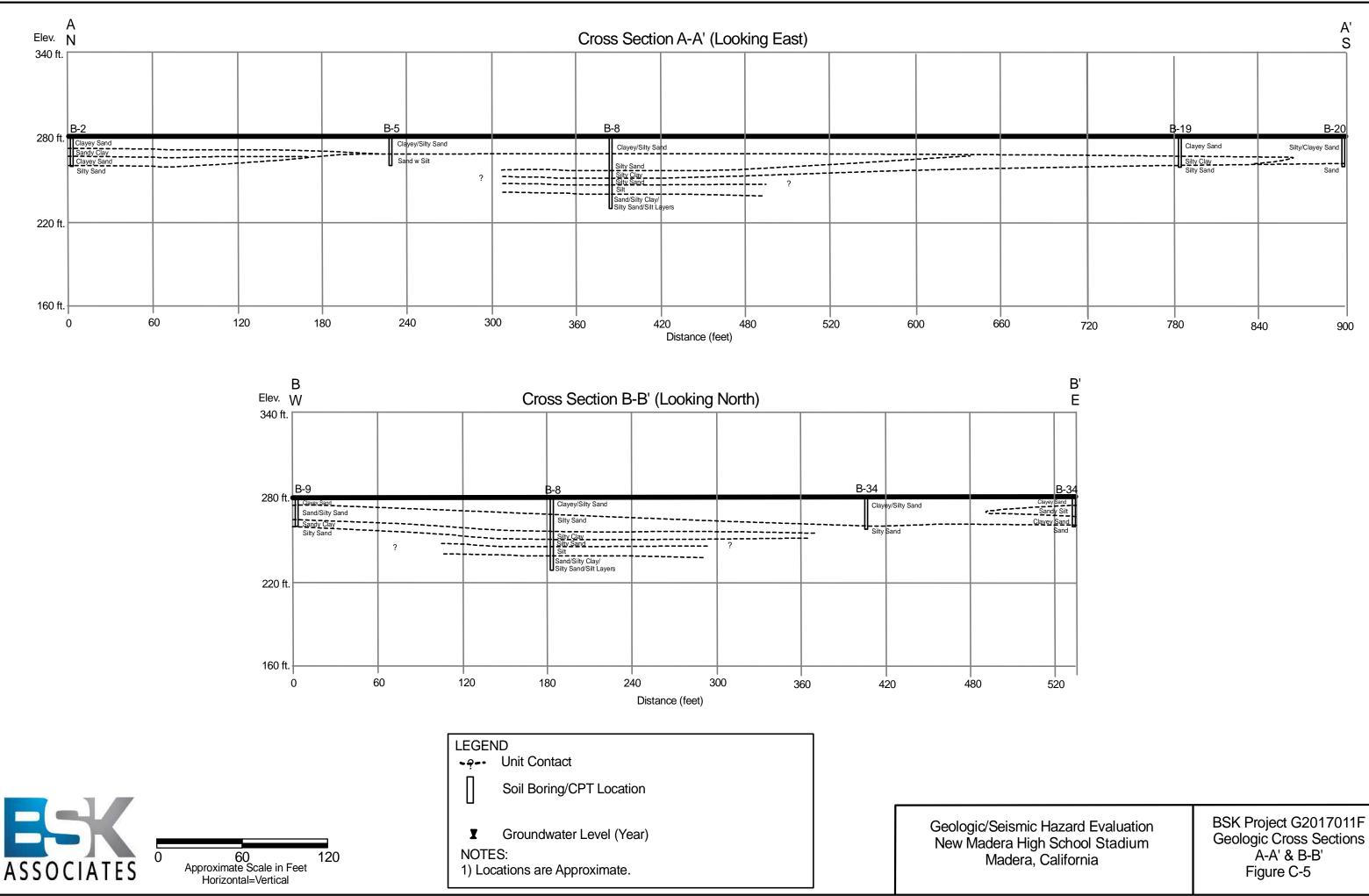




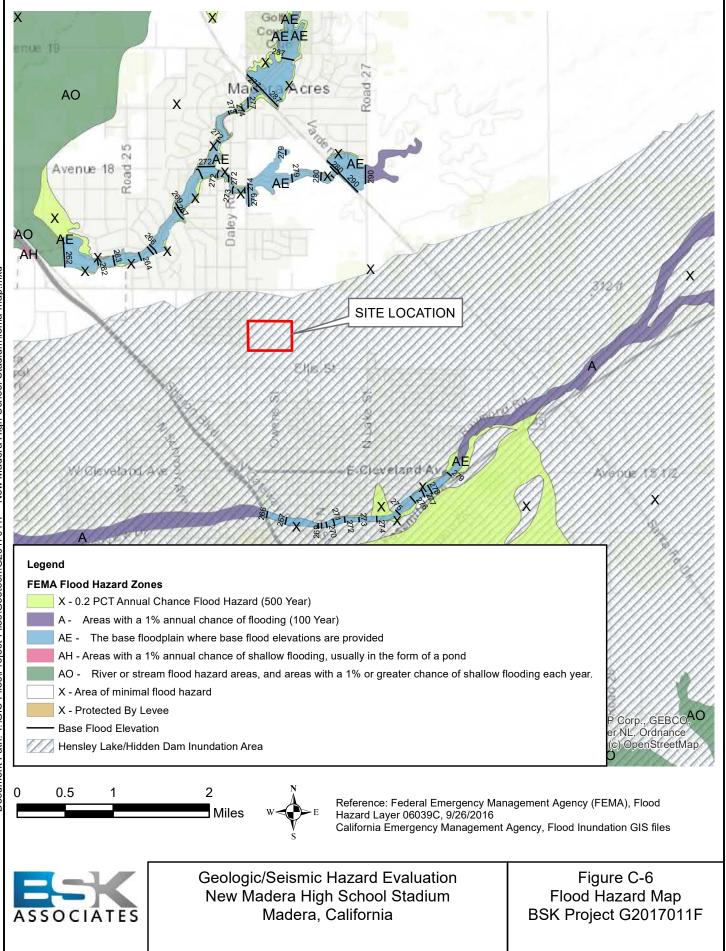
Document Path: T:\GIS-Files\Project-Files\Geotech\G1615911F - New Madera High School\topomap.mxd

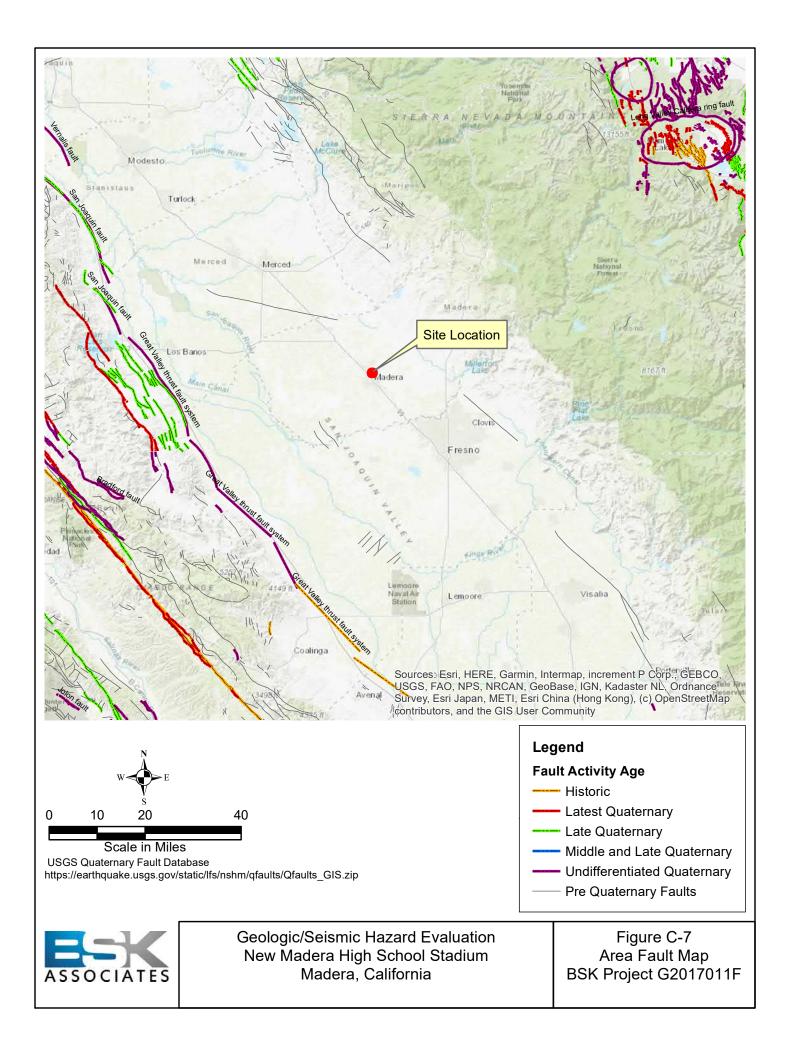


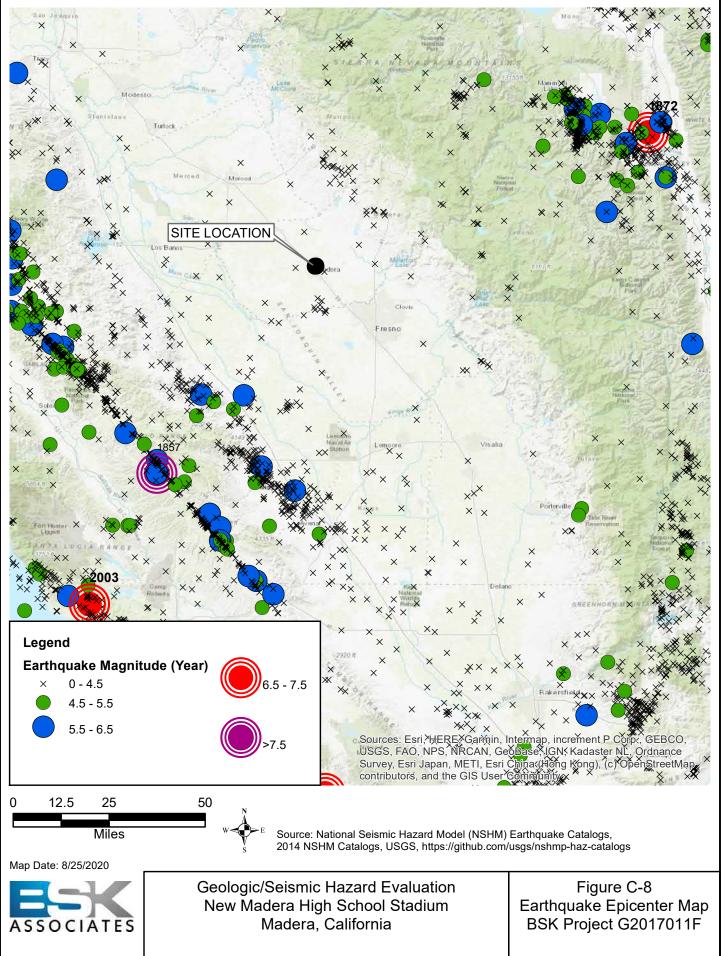

State Well Number: 11S17E02Q001M Latitude (NAD83): 36.997400 Longitude (NAD83): -120.0824 Groundwater Basin (code): Madera (5-22.06) Reference Point Elevation (NAVD88 ft): 284.30 Ground Surface Elevation (NAVD88 ft): 282.30


Reference: http://www.water.ca.gov/waterdatalibrary/index.cfm




Geologic/Seismic Hazard Evaluation New Madera High School Stadium Madera, California Figure C-2 Area Hydrograph BSK Project G2017011F



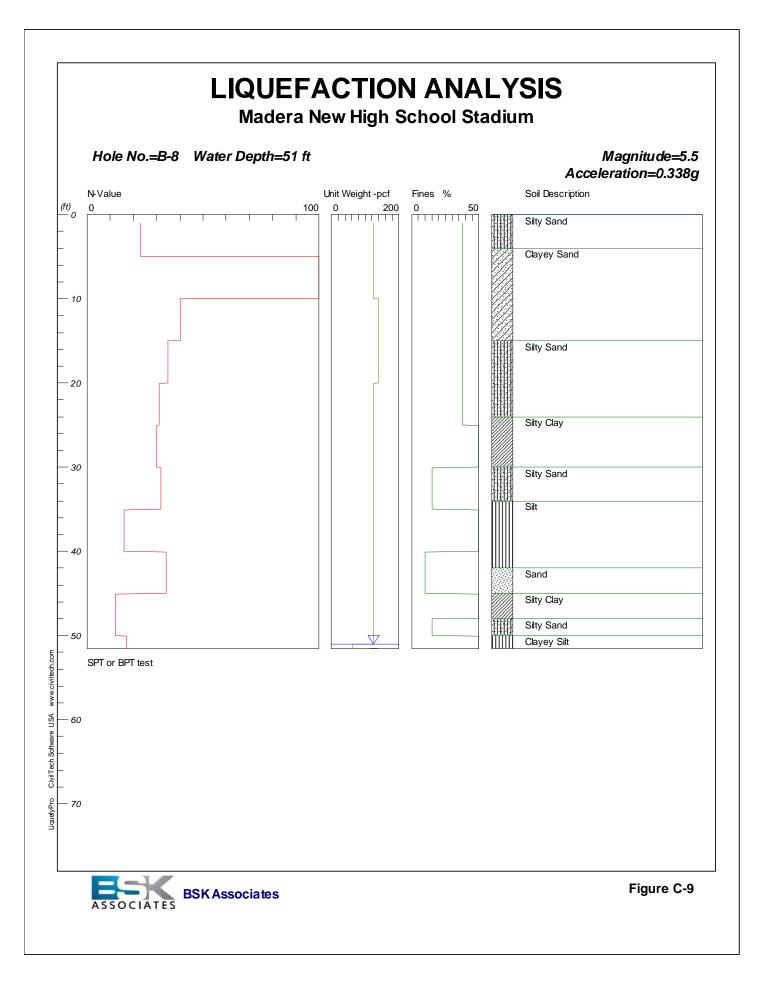



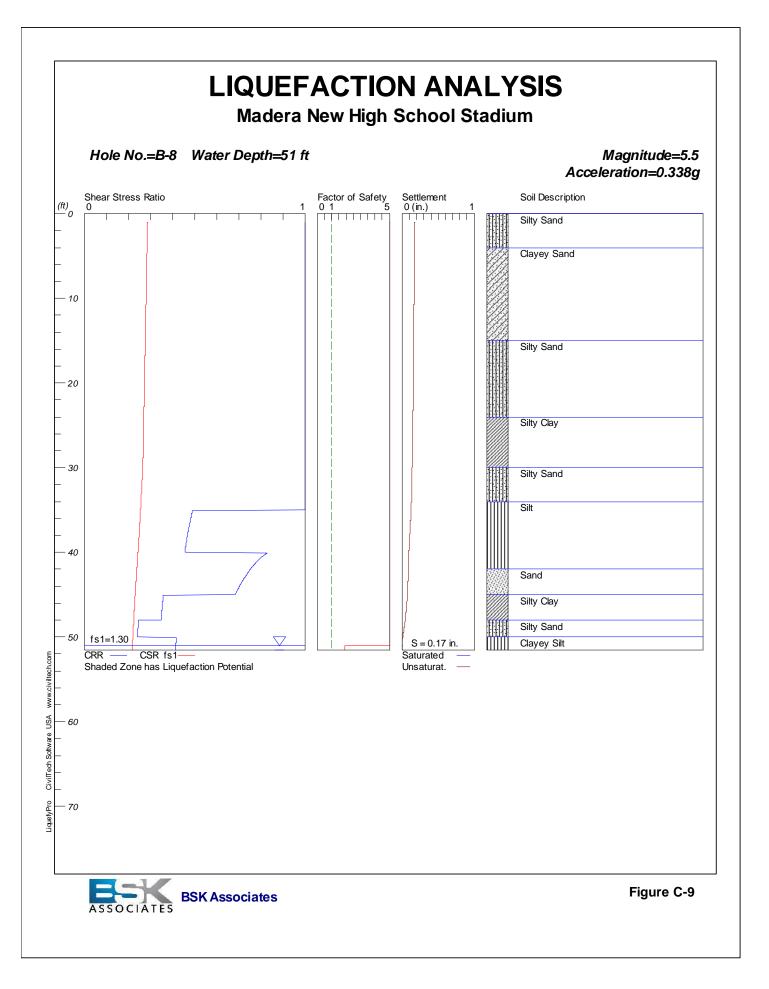



| ic Hazard Evaluation |  |
|----------------------|--|
| igh School Stadium   |  |
| a, California        |  |









```
LIQUEFACTION ANALYSIS SUMMARY
                                   Copyright by CivilTech Software
                                     www.civiltech.com
  Font: Courier New, Regular, Size 8 is recommended for this report.
     Licensed to , 9/9/2016
                                12:37:26 PM
     Input File Name: Q:\Active\Other Offices\G1615911F - New Madera HS\B-8.lig
     Title: Madera New High School
     Subtitle:
     Surface Elev.=
     Hole No.=B-8
     Depth of Hole= 51.50 ft
     Water Table during Earthquake= 51.00 ft
     Water Table during In-Situ Testing= 51.00 ft
     Max. Acceleration= 0.31 g
     Earthquake Magnitude= 6.20
Input Data:
     Surface Elev.=
     Hole No.=B-8
     Depth of Hole=51.50 ft
     Water Table during Earthquake= 51.00 ft
     Water Table during In-Situ Testing= 51.00 ft
     Max. Acceleration=0.31 g
     Earthquake Magnitude=6.20
     No-Liquefiable Soils: Based on Analysis
     1. SPT or BPT Calculation.
     2. Settlement Analysis Method: Tokimatsu, M-correction
     3. Fines Correction for Liquefaction: Stark/Olson et al.*
     4. Fine Correction for Settlement: During Liquefaction*
     5. Settlement Calculation in: All zones*
     6. Hammer Energy Ratio, Ce = 1.3
     7. Borehole Diameter, Cb= 1.15
     8. Sampling Method, Cs= 1.2
     9. User request factor of safety (apply to CSR) , \quad User= 1.3
        Plot one CSR curve (fs1=User)
     10. Use Curve Smoothing: No
     * Recommended Options
     In-Situ Test Data:
     Depth SPT
                gamma Fines
                  pcf
     ft
                         %
            23.00 124.00 38.00
     1.00
          100.00 124.00 38.00
     5.00
     10.0040.00140.0038.0015.0035.00140.0038.0020.0031.00124.0038.00
     25.00 30.00 124.00 50.00
     30.00 32.00 124.00 15.00
     35.0016.00124.0050.0040.0034.00124.0010.00
```

Output Results:

45.0012.00124.0050.0048.0012.00124.0015.0050.0017.00124.0050.00

Settlement of Saturated Sands=0.00 in. Settlement of Unsaturated Sands=0.17 in. Total Settlement of Saturated and Unsaturated Sands=0.17 in. Differential Settlement=0.084 to 0.110 in.





LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltech.com Font: Courier New, Regular, Size 8 is recommended for this report. Licensed to , 8/24/2020 1:12:18 PM Input File Name: T:\Project Docs\G2017011F - New Madera HS - Stadium\B-8\_2019cbc.liq Title: Madera New High School Stadium Subtitle: Surface Elev.= Hole No.=B-8 Depth of Hole= 51.50 ft Water Table during Earthquake= 51.00 ft Water Table during In-Situ Testing= 51.00 ft Max. Acceleration= 0.34 g Earthquake Magnitude= 5.50 Input Data: Surface Elev.= Hole No.=B-8 Depth of Hole=51.50 ft Water Table during Earthquake= 51.00 ft Water Table during In-Situ Testing= 51.00 ft Max. Acceleration=0.34 g Earthquake Magnitude=5.50 No-Liquefiable Soils: Based on Analysis 1. SPT or BPT Calculation. 2. Settlement Analysis Method: Tokimatsu, M-correction 3. Fines Correction for Liquefaction: Stark/Olson et al.\* 4. Fine Correction for Settlement: During Liquefaction\* 5. Settlement Calculation in: All zones\* 6. Hammer Energy Ratio, Ce = 1.37. Borehole Diameter, Cb= 1 8. Sampling Method, Cs=19. User request factor of safety (apply to CSR) , User= 1.3 Plot one CSR curve (fs1=User) 10. Use Curve Smoothing: No \* Recommended Options In-Situ Test Data: Depth SPT gamma Fines pcf ft. 8 1.00 23.00 124.00 38.00 5.00 100.00 124.00 38.00 10.0040.00140.0038.0015.0035.00140.0038.00 20.00 31.00 124.00 38.00 25.0030.00124.0050.0030.0032.00124.0015.00 35.00 16.00 124.00 50.00 40.00 34.00 124.00 10.00 45.0012.00124.0050.0048.0012.00124.0015.00

Output Results:

50.00 17.00 124.00 50.00

Settlement of Saturated Sands=0.00 in. Settlement of Unsaturated Sands=0.17 in. Total Settlement of Saturated and Unsaturated Sands=0.17 in. Differential Settlement=0.085 to 0.112 in.

RFI No.: HCCI#012

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.26.2021 Respond By:

Architect Project No. Project: MTHS Stadium

INFORMATION REQUESTED: Pole Vault Box and Surfacing

Please provide manufacturer and model number of the Pole Vault box shown on K-SD/X103. Also please confirm track surfacing associated with the Pole Vault area is to be by other as noted on the detail.

Response:

Pole vault detailing to be revised to clarify requirements. See Clarifications in forthcoming addenda #3

| Consultant's Signature:                      | Architect's Signature:                |
|----------------------------------------------|---------------------------------------|
| Date:                                        | Date 10/29/2021                       |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |

RFI No.: HCCI#013

To: Darden Architects, Inc. 6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Date: 10.26.2021 Respond By:

Architect Project No. Project: MTHS Stadium

1

INFORMATION REQUESTED: Storefront Deferred Approval

Please advise if the Storefronts are deferred approval with DSA? They are not listed as such but there are Storefronts that over 10'W or 10'H. This normally requires deferred approval.

If so, what requirements for Engineering, etc... will be required?

**RESPONSE**:

DSA did not require Submittal of storefrotns as a deferred approval for this application number. Fastening requirements for storefront frames are indicated in details.

| Consultant's Signature:                      | Architect's Signature:                |
|----------------------------------------------|---------------------------------------|
| Date:                                        | Date 10/29/21                         |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |

|                 | Pre-Bid REQUEST FOR IN                                                                                                  |                       |           | RFI No:                    | 1        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|----------------------------|----------|
|                 |                                                                                                                         |                       |           | Date:                      | 10/20/21 |
|                 | Submitted to: Darden ArchitectsSubmitted By: Sarah SherwoodAttention: Matt HeissE-mail: estimating@amgassociatesinc.com |                       |           |                            |          |
| Attention: Ma   | tt Heiss                                                                                                                | E-mail: estimating@   | amgasso   | ciatesinc.cor              | n        |
| Phone: 661-2    | 51-7401                                                                                                                 | Fax: 661-251-7405     |           |                            |          |
| Project:        | Matilda Torres High School Stadium<br>Project                                                                           | Spec. Section:        |           | tor & Subco<br>inting Requ |          |
| Location:       | Madera, CA                                                                                                              | Drawing #:            |           |                            |          |
| Sent Via        | Email                                                                                                                   | Detail:               |           |                            |          |
|                 | The following info                                                                                                      | ormation is requested | 4.        |                            |          |
| Would it be acc | ceptable for the Subcontractor's Exempt                                                                                 |                       |           | hours of the               | bid      |
| date?           |                                                                                                                         |                       |           |                            |          |
|                 |                                                                                                                         |                       |           |                            |          |
|                 |                                                                                                                         |                       |           |                            |          |
|                 | Res                                                                                                                     | ponse:                |           |                            |          |
| signed at the   | ractor fingerprinting requirements end<br>e bottom of the form and submitted<br>ement of the form.                      |                       | be        |                            |          |
|                 |                                                                                                                         | attless               | resti     | 8                          |          |
|                 | 26535 Summit Circle, Santa Clarita CA                                                                                   | 91350 (661) 251-740'  | FAX (661) | 251-7405                   |          |

| Attention: Matt Heiss       E-mail         Phone: 661-251-7401       Fax: 6         Project:       Matilda Torres High School Stadium         Project:       Spec.                                                                                   | Date:     10/       pmitted By: Sarah Sherwood     10/       pail: estimating@amgassociatesinc.com     10/       : 661-251-7405     10/       ec. Section:     Recycled Content Certific       wing #:     10/       ail:     10/ | /28/21 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Attention: Matt Heiss       E-mail         Phone: 661-251-7401       Fax: 6         Project:       Matilda Torres High School Stadium<br>Project       Spec.         Location:       Madera, CA       Draw         Sent Via       Email       Detail | ail: estimating@amgassociatesinc.com<br>: 661-251-7405<br>c. Section:<br>wing #:<br>ail:<br>tion is requested:                                                                                                                    | ation  |
| Phone: 661-251-7401       Fax: 6         Project:       Matilda Torres High School Stadium<br>Project       Spec.         Location:       Madera, CA       Drawi         Sent Via       Email       Detail                                           | : 661-251-7405<br>ec. Section:<br>wing #:<br>ail:<br>tion is requested:                                                                                                                                                           | ation  |
| Project: Matilda Torres High School Stadium<br>Project Spec.<br>Location: Madera, CA Draw<br>Sent Via Email Detail<br>The following information                                                                                                      | ec. Section:<br>wing #:<br>ail:<br>tion is requested:                                                                                                                                                                             | ation  |
| Project     Spec.       Location:     Madera, CA     Draw       Sent Via     Email     Detail   The following information                                                                                                                            | wing #:<br>ail:<br>tion is requested:                                                                                                                                                                                             | ation  |
| Sent Via Email Detail The following information                                                                                                                                                                                                      | ail:<br>tion is requested:                                                                                                                                                                                                        |        |
| The following information                                                                                                                                                                                                                            | tion is requested:                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   | -      |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
| Response                                                                                                                                                                                                                                             | se:                                                                                                                                                                                                                               |        |
| The Decided Content Cartification Form is to be filled                                                                                                                                                                                               | ad out                                                                                                                                                                                                                            |        |
| The Recycled Content Certification Form is to be filled<br>(estimated as best as possible) and submitted with the                                                                                                                                    | ne hid as an                                                                                                                                                                                                                      |        |
| acknowledgement of the form.                                                                                                                                                                                                                         |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                 |        |
|                                                                                                                                                                                                                                                      | atthe sty lin                                                                                                                                                                                                                     |        |
|                                                                                                                                                                                                                                                      | Martin Chura                                                                                                                                                                                                                      |        |

|                                | × <u></u> 27/ 14 <u></u> 27                   |                       |             |                            |          |
|--------------------------------|-----------------------------------------------|-----------------------|-------------|----------------------------|----------|
| ANG                            |                                               |                       |             |                            |          |
| P                              | re-Bid REQUEST FOR IN                         | FORMATION             |             | RFI No:                    | 3        |
|                                |                                               |                       |             | Date:                      | 10/28/21 |
| Submitted to:<br>Attention: Ma | Darden Architects                             | Submitted By: Sara    |             |                            |          |
|                                |                                               | E-mail: estimating@   | amgasso     | clatesinc.com              | n        |
| Phone: 661-25                  | 51-7401                                       | Fax: 661-251-7405     |             |                            |          |
| Project:                       | Matilda Torres High School Stadium<br>Project | Spec. Section:        |             | tor & Subco<br>inting Requ |          |
| Location:                      | Madera, CA                                    | Drawing #:            |             |                            |          |
| Sent Via                       | Email                                         | Detail:               |             |                            |          |
|                                | The following info                            | rmation is requested  | 4.          |                            |          |
| Please confirm                 | that the Contractor & Subcontractor Fir       | •                     |             | are to be sub              | mitted   |
|                                | so, please confirm that this is to be com     |                       |             |                            |          |
|                                |                                               |                       |             | aal, not by th             |          |
| contractor or su               | ubcontractors.                                |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
| Response:                      |                                               |                       |             |                            |          |
| •AMG #3 – S                    | •AMG #3 – See response to RFI – AMG #1        |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       | 1           |                            |          |
|                                |                                               | atthem                | Slisa       |                            |          |
|                                |                                               |                       | 1-0         |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                |                                               |                       |             |                            |          |
|                                | 26535 Summit Circle, Santa Clarita CA         | 91350. (661) 251-7401 | L FAX (661) | 251-7405                   |          |

|                                                                                                                                                                   |                                                                                    |                               | RFI No:        | 4        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|----------------|----------|
| "                                                                                                                                                                 | re-Bid REQUEST FOR IN                                                              | FORMATION                     | Date:          | 10/29/21 |
| Submitted to:                                                                                                                                                     | Darden Architects                                                                  | Submitted By: Bari Heiden     | ·              |          |
| Attention: Ma                                                                                                                                                     | tt Heiss                                                                           | E-mail: estimating@amgas      | sociatesinc.co | m        |
| Phone: 661-25                                                                                                                                                     | 51-7401                                                                            | Fax: 661-251-7405             |                |          |
|                                                                                                                                                                   | I                                                                                  |                               |                |          |
| Project:                                                                                                                                                          | Matilda Torres High School Stadium<br>Project                                      | Spec. Section:                | CMU Venee      | r        |
| Location:                                                                                                                                                         | Madera, CA                                                                         | Drawing #:                    |                |          |
| Sent Via                                                                                                                                                          | Email                                                                              | Detail:                       |                |          |
|                                                                                                                                                                   | The following info                                                                 | rmation is requested:         |                |          |
|                                                                                                                                                                   | nd Plaster won't hold the weight in a Ea<br>hould have the Engineer review this De |                               |                |          |
| Response:                                                                                                                                                         |                                                                                    |                               |                |          |
| Halfen channels are to be fastened to z furring as<br>indicated in detail J14. Z furring spans 1 " exterior<br>rigid insulation and is fastened directly to stud. |                                                                                    |                               |                |          |
|                                                                                                                                                                   |                                                                                    |                               |                |          |
|                                                                                                                                                                   | 26535 Summit Circle, Santa Clarita CA 9                                            | 91350. (661) 251-7401 FAX (66 | 51) 251-7405   |          |

| Submitted to: Darden Arch<br>Attention: Matt Heiss<br>Phone: 661-251-7401                                                                                                                                                    | Forres High School Stadium<br>, CA<br>The following info | Submitted By: David<br>E-mail: estimating@<br>Fax: 661-251-7405<br>Spec. Section:<br>Drawing #:<br>Detail:<br>ormation is requested<br>onfirm that on bid date | e amgasso<br>l:<br>the city of | 00420<br>the subcontr | actor being |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|-------------|
| Attention: Matt Heiss         Phone: 661-251-7401         Project:       Matilda Terroject         Location:       Madera         Sent Via       Email         Regarding the designation of listed is sufficient and not the | Forres High School Stadium<br>, CA<br>The following info | E-mail: estimating@<br>Fax: 661-251-7405<br>Spec. Section:<br>Drawing #:<br>Detail:<br>Commation is requested<br>onfirm that on bid date                       | e amgasso<br>l:<br>the city of | 00420<br>the subcontr | actor being |
| Phone: 661-251-7401         Project:       Matilda T         Project       Project         Location:       Madera         Sent Via       Email         Regarding the designation of listed is sufficient and not the         | , CA<br>The following info                               | Fax: 661-251-7405 Spec. Section: Drawing #: Detail: Frmation is requested Defirm that on bid date                                                              | l:<br>the city of              | 00420<br>the subcontr | actor being |
| Project: Project<br>Location: Madera<br>Sent Via Email<br>Regarding the designation of<br>listed is sufficient and not the                                                                                                   | , CA<br>The following info                               | Drawing #:<br>Detail:<br>prmation is requested<br>onfirm that on bid date                                                                                      | the city of                    | the subcontr          | •           |
| Project: Project<br>Location: Madera<br>Sent Via Email<br>Regarding the designation of<br>listed is sufficient and not the                                                                                                   | , CA<br>The following info                               | Drawing #:<br>Detail:<br>prmation is requested<br>onfirm that on bid date                                                                                      | the city of                    | the subcontr          | •           |
| Sent Via Email<br>Regarding the designation of<br>listed is sufficient and not the                                                                                                                                           | <b>The following info</b><br>subcontractors, please co   | Detail:<br>rmation is requested<br>onfirm that on bid date                                                                                                     | the city of                    |                       | •           |
| Regarding the designation o                                                                                                                                                                                                  | subcontractors, please co                                | ormation is requested                                                                                                                                          | the city of                    |                       | •           |
| listed is sufficient and not the                                                                                                                                                                                             | subcontractors, please co                                | onfirm that on bid date                                                                                                                                        | the city of                    |                       | •           |
| listed is sufficient and not the                                                                                                                                                                                             | subcontractors, please co                                | onfirm that on bid date                                                                                                                                        | the city of                    |                       | •           |
|                                                                                                                                                                                                                              |                                                          |                                                                                                                                                                |                                |                       |             |
|                                                                                                                                                                                                                              | Res                                                      | ponse:                                                                                                                                                         |                                |                       |             |
| Refer to Front End docu<br>Paragraph 9 DESIGNA<br>day. Provide full addres                                                                                                                                                   | TION OF SUBCONTRA                                        | <b>CTORS</b> for required                                                                                                                                      |                                |                       |             |
| Phone number and licer                                                                                                                                                                                                       | nse expiration date may                                  | / be submitted withir                                                                                                                                          | 24 hours                       | s after bid.          |             |

|               | Pre-Bid REQUEST FOR IN                        | FORMATION             |         | RFI No:      | 6        |
|---------------|-----------------------------------------------|-----------------------|---------|--------------|----------|
|               | : Darden Architects                           | Submitted By: David   | Silva   | Date:        | 10/29/21 |
| Attention: Ma |                                               | E-mail: estimating@a  |         | ciatesinc co | m        |
| Phone: 661-2  |                                               | Fax: 661-251-7405     | inguoto |              |          |
|               |                                               |                       |         |              |          |
| Project:      | Matilda Torres High School Stadium<br>Project | Spec. Section:        |         |              |          |
| Location:     | Madera, CA                                    | Drawing #:            |         |              |          |
| Sent Via      | Email                                         | Detail:               |         |              |          |
|               | The following info                            | rmation is requested: |         |              |          |
|               |                                               |                       |         |              |          |
|               |                                               |                       |         |              |          |
|               |                                               |                       |         |              |          |
|               | Res                                           | ponse:                |         |              |          |
| Regarc        | Res<br>ding Builders Risk, Earthquake and f   |                       | equired |              |          |



A-C Electric Company — CALIFORNIA C-10 LICENSE 99849

ENGINEERING-CONSTRUCTION-TECHNOLOGY-SERVICE

PRECONSTRUCTION SERVICES Box 81977 2921 Hangar Way (93308) Bakersfield, CA 93380-1977 Phone 661/410-0000 Fax 661/410-0402 www.a-celectric.com

## **REQUEST FOR INFORMATION**

| To:  | Darden Architects       | <b>Date:</b> 10/22/21          |  |  |  |
|------|-------------------------|--------------------------------|--|--|--|
|      | 6700 N. West Ave.       | <b>RFI No.:</b> A-C 02         |  |  |  |
|      | Fresno, CA 93711        | Customer Job No.: 092721       |  |  |  |
|      | Attn: Matt Heiss        | <b>A-C Job No.:</b> F-21-116   |  |  |  |
|      |                         | Job Name: Toros Stadium - MUSD |  |  |  |
|      |                         |                                |  |  |  |
| Subj | ect: Site Pullbox Sizes |                                |  |  |  |
| Spec | . Section / Page:       | Sheet / Detail: E600 Detail 6  |  |  |  |
| Ques | tion / Problem:         |                                |  |  |  |

Detail 6 on E600 describes the installation method for concrete pullboxes on the project. Note 3 on this detail says that the size of the pullboxes are 'per plans', however, I can't find a chart or note that calls out sizing for the various pullboxes required for the project. Please direct me to the location where these are called out, or provide a list of sizes for the pullboxes shown on the plans.

| Please respond by: | Attachments: |
|--------------------|--------------|
|                    |              |

|        |                                                     | Tom Henderson - Estimator                   |
|--------|-----------------------------------------------------|---------------------------------------------|
| Signed | l                                                   | Name and Title                              |
| Reply  | :<br>Sizes for the site pullboxes have been added t | o the plans. Refer to Addendum #3 drawings. |
| Date:  | 11/3/2021                                           | Attachments:                                |
|        | R.C. H                                              | K.C. Hogan, TEE - Engineer                  |

Name and Title



| A-C Electric C | ompany | — CALIFORNIA C-10 LICENSE 99849 |
|----------------|--------|---------------------------------|
|----------------|--------|---------------------------------|

ENGINEERING-CONSTRUCTION-TECHNOLOGY-SERVICE

PRECONSTRUCTION SERVICES Box 81977 2921 Hangar Way (93308) Bakersfield, CA 93380-1977 Phone 661/410-0000 Fax 661/410-0402 www.a-celectric.com

## **REQUEST FOR INFORMATION**

| To:                                  | Darden Architects | Date: 10/26/21                 |
|--------------------------------------|-------------------|--------------------------------|
|                                      | 6700 N. West Ave. | RFI No.: A-C 03                |
|                                      | Fresno, CA 93711  | Customer Job No.: 092721       |
| Fresno, CA 93711<br>Attn: Matt Heiss | Attn: Matt Heiss  | A-C Job No.: F-21-116          |
|                                      |                   | Job Name: Toros Stadium - MUSD |
|                                      |                   |                                |

| Subject: Fixture F2D  |                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|
| Spec. Section / Page: | Sheet / Detail: E003 & E201                                                                                       |
| Question / Problem:   |                                                                                                                   |
|                       | es in Room L104 (Snack Bar). These fixtures are not specified lease provide specifications for this fixture type. |

| Please respond by: | Attachments: |
|--------------------|--------------|
|                    |              |

Tom Henderson - Estimator

Signed

Name and Title

| Reply:  |           | be type F2C. Refer to Addendum #3 drawings for<br>s. |
|---------|-----------|------------------------------------------------------|
| Date: 1 | 11/3/2021 | Attachments:                                         |
|         | R.C. Ha   | K.C. Hogan, TEE - Engineer                           |



| A-C Electric Company | — CALIFORNIA C-10 LICENSE 99849 |
|----------------------|---------------------------------|
|----------------------|---------------------------------|

ENGINEERING-CONSTRUCTION-TECHNOLOGY-SERVICE

PRECONSTRUCTION SERVICES Box 81977 2921 Hangar Way (93308) Bakersfield, CA 93380-1977 Phone 661/410-0000 Fax 661/410-0402 www.a-celectric.com

## **REQUEST FOR INFORMATION**

| To: | Darden Architects | Date: 10/26/21                 |
|-----|-------------------|--------------------------------|
|     | 6700 N. West Ave. | <b>RFI No.:</b> A-C 04         |
|     | Fresno, CA 93711  | Customer Job No.: 092721       |
|     | Attn: Matt Heiss  | <b>A-C Job No.:</b> F-21-116   |
|     |                   | Job Name: Toros Stadium - MUSD |
|     |                   |                                |

| Subject: Fixture F7/60 |                             |
|------------------------|-----------------------------|
| Spec. Section / Page:  | Sheet / Detail: E003 & E205 |
| Question / Problem:    |                             |

Detail 5 on sheet E205 calls for two F7/60 fixtures in the stairwell lightboxes. These fixtures are not specified on the Luminaire Schedule on sheet E003. Please provide specifications for this fixture type.

| Please respond by: | Attachments: |
|--------------------|--------------|
|                    |              |

Tom Henderson - Estimator Name and Title

| <b>Reply:</b><br>Type has been added to the Luminaire Schedule. Refer to Addendum #3 drawings for update schedule. |          | uminaire Schedule. Refer to Addendum #3 drawings for updated |
|--------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|
| Date: 1                                                                                                            | 1/3/2021 | Attachments:                                                 |
| ,<br>Signed                                                                                                        | X.C. 74  | K.C. Hogan, TEE - Engineer<br>Name and Title                 |

Signed



A-C Electric Company — CALIFORNIA C-10 LICENSE 99849

ENGINEERING-CONSTRUCTION-TECHNOLOGY-SERVICE

PRECONSTRUCTION SERVICES Box 81977 2921 Hangar Way (93308) Bakersfield, CA 93380-1977 Phone 661/410-0000 Fax 661/410-0402 www.a-celectric.com

## **REQUEST FOR INFORMATION**

| To: | Darden Architects | <b>Date:</b> 10/20/21          |
|-----|-------------------|--------------------------------|
|     | 6700 N. West Ave. | <b>RFI No.:</b> A-C 01         |
|     | Fresno, CA 93711  | Customer Job No.: 092721       |
|     | Attn: Matt Heiss  | A-C Job No.: F-21-116          |
|     |                   | Job Name: Toros Stadium - MUSD |
|     |                   |                                |

| Subject: Tennis Court Lighting                                                                               |                                                                                                |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Spec. Section / Page:                                                                                        | Sheet / Detail: E101                                                                           |
| Question / Problem:                                                                                          |                                                                                                |
| Between Courts 1&2 and Courts 7&8, there are pairs<br>Is the intention to have a two head variant of the PT1 | of PT1 fixtures shown apparently sharing a single pole.<br>fixture, with heads at 180 degrees? |
|                                                                                                              |                                                                                                |
|                                                                                                              |                                                                                                |
|                                                                                                              |                                                                                                |
| Please respond by:                                                                                           | Attachments:                                                                                   |

Tom Henderson - Estimator Signed Name and Title Reply: We added a new PT5 to the Luminaire Schedule to address this pole with two heads. PTx series tags refer to pole and head assemblies. Head types ST1 and ST2 were inadvertently omitted. Refer to updated Luminaire Schedule issued in Addendum #3. 11/3/2021 Date: Attachments: K.C. H K.C. Hogan, TEE - Engineer

# **REQUEST FOR INFORMATION RFI No.:** To: Darden Architects, Inc. Date: 11/1/21 6790 North West Avenue **Respond By:** Fresno, California 93711 Architect Project No. Attn: Matt Heiss **INFORMATION REQUESTED:** test 277313 E501 Note: 3 Please confirm if the Existing Stadium Field Speakers are to remain If the Contractor considers that this supplemental instruction requires a change in the Contract Sum or Contract Time, the Contractor **Refered Date: Return Date:** 1. The existing stadium field speakers are to remain. Refer to 3/E501. noted on plans. 3/E501. Architect's Signature: Date: November 3, 2021 Date Copy: Owner Inspector Testing Lab Structural Mech. Elec File Other Pages Attached:

Project: Matilda Torres HS Stadium

#### or to be replaced.

277313 E501 Note: 2 Please confirm if the Existing Baseball and Softball Field Speakers are to remain or to be replaced.

277313 E501 Note: 3 Please confirm if the existing Nevco Channel Mixer is to remain or to be replaced.

| Cost Impact: None:     |      | Signature:             |                 |  |
|------------------------|------|------------------------|-----------------|--|
| Schedule Impact: Nonc: | Days |                        | Pages Attached: |  |
| Trade/Contractor:      | ~    | Schedule Task No/Item: |                 |  |

The Work shall be carried out in accordance with the following supplemental instructions issued in accordance with the Contract Documents without change in the Contract Sum or Contract Time. Proceeding with the Work in accordance with these instructions indicates your acknowledgement that there will be no change in the Contract Sum or Contract Time.

shall not proceed with this Work and shall promptly submit an itemized proposal to the Architect for doing this work. If your proposal is found to be satisfactory and in order, this supplemental instruction will be superseded by a Construction Change Directive.

Refered To:

#### SUPPLEMENTAL INSTRUCTIONS:

2. Speakers do not currently exist for the baseball and softball fields. Provide new speakers as

3. The Nevco Channel Mixer is to remain and will be relocated to the new press box. Refer to

Consultant's Signature: Deryle Rowe

1

RFI No.:

To: Darden Architects, Inc.

6790 North West Avenue Fresno, California 93711 Date: 11/1/21 Respond By:

Architect Project No.

Attn: Matt Heiss

Project: Matilda Torres HS Stadium

#### **INFORMATION REQUESTED:**

test

274116 2.03 Pg.5 A PVS411D is called out for the Extron Digital Wall/Polvault system. Extron's current model of PVS is the 407D. Do we include the 407D in our pricing?

274116 #6 Pg.9 (2) PVT SW HDMI inputs are called out for media source. Note:1 Pg.E501 only shows (1) PVT HDMI input. Please confirm the qty. inputs needed.

| Cost Impact: None:                                                                                                                          | Signature:              |                              |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|---------------------------------------------|
| Schedule Impact: None:                                                                                                                      | Days                    |                              | Pages Attached:                             |
| Trade/Contractor:                                                                                                                           | Sch                     | edule Task No/Item:          | 1                                           |
| The Work shall be carried out in accordance<br>Documents without change in the Contract<br>indicates your acknowledgement that there        | Sum or Contract Time.   | Proceeding with the Work     | in accordance with these instructions       |
| If the Contractor considers that this supple<br>shall not proceed with this Work and shall<br>found to be satisfactory and in order, this s | promptly submit an item | ized proposal to the Archite | ct for doing this work. If your proposal is |
| Refered To:                                                                                                                                 |                         | Refered Date:                | Return Date:                                |
| SUPPLEMENTAL INSTRUC                                                                                                                        | TIONS:                  |                              |                                             |
| <ol> <li>Provide the current model 4</li> <li>One input plate is required</li> </ol>                                                        | 407D                    |                              |                                             |
| Der                                                                                                                                         | long                    | -                            | ·                                           |
| Consultant's Signature: Deryle R                                                                                                            | owe                     | Architect's Signatu          | re:                                         |
| Date: Novemb                                                                                                                                | per 3, 2021             | Da                           | te                                          |
| Copy: Owner Inspector Testing                                                                                                               | Lab Structural          | ]Mech. DElec File            | Other Pages Attached:                       |

To: Darden Architects, Inc.

6790 North West Avenue Fresno, California 93711

Attn: Matt Heiss

Project: Matilda Torres HS Stadium

1

#### **INFORMATION REQUESTED:**

test

274116 2.05 Pg.11 Please clarify the intent of an in-wall FSR #PWB-100 Enclosure for a ceiling mounted projector.

Date: 11/1/21

Architect Project No.

Respond By:

274116 Projector Screen No projector screen location or manufacture has been called out on the drawings. What will the classroom projectors display on?

| Cost Impact: None:                                                                                                                | Signature:                 |                                |                                             |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|---------------------------------------------|
| Schedule Impact: None:                                                                                                            | Days                       |                                | Pages Attached:                             |
| Trade/Contractor:                                                                                                                 | Scl                        | Schedule Task No/Item:         |                                             |
| The Work shall be carried out in accord<br>Documents without change in the Contr<br>indicates your acknowledgement that the       | ract Sum or Contract Time  | e. Proceeding with the Work i  | in accordance with these instructions       |
| If the Contractor considers that this sup<br>shall not proceed with this Work and sh<br>found to be satisfactory and in order, th | all promptly submit an ite | mized proposal to the Architer | ct for doing this work. If your proposal is |
| Refered To:                                                                                                                       |                            | Refered Date:                  | Return Date:                                |
| SUPPLEMENTAL INSTRU                                                                                                               | UCTIONS:                   |                                |                                             |
| 1. The FSR #PWB-100 is n<br>be part of scope.                                                                                     | ot required for the c      | eiling mounted projecto        | or and is not required to                   |
| 2. The projector will display                                                                                                     | on the wall or white       | board.                         |                                             |
| Dee                                                                                                                               |                            | -                              |                                             |
| Consultant's Signature: Deryle F                                                                                                  | Rowe                       | Architect's Signatur           | e:                                          |
| Date: Novem                                                                                                                       | nber 3, 2021               | Dat                            | e                                           |
| Copy: Owner Inspector Test                                                                                                        | ing Lab Structural         | Mech.                          | Other Pages Attached:                       |

RFI No.:



#### **Request for Information**

To: Matthew Heiss DARDEN ARCHITECTS, INC Mobile: (559) 448-8051 Fax: (559) 446-1765 Email: matth@dardenarchitects.com From: Joe Fuentes Marina Landscape, Inc. 3707 W Garden Grove Blvd Orange, CA 92868 Office: (714) 704-0467 Fax: (714) 935-0797 Email: joe@marinaco.com

| Remarks  |                      |            |               |
|----------|----------------------|------------|---------------|
| □ Urgent | For your information | Reply ASAP | lease comment |

#### Date: 10/22/2021 Project: MATILDA TORRES HS STADIUM Subject: LANDSCAPE AND IRRIGATION

1. Dietes bicolor shrubs appear on planting legend/ SD-L200 as 1-gallon but also referred to as 5 gallon on the left corner of the page. Please indicate if callouts will supersede where this inconsistency occurs as to sizing.

2. Keynote #3 on the irrigation sleeve legend/ SD/L100 requires a 10" diameter SDR35 PVC mainline sleeve. Sheet SD/L102 shows the same keynote where a lateral condition occurs at the paved area between the two fields. Please confirm the callout requirement will prevail or revise plan to annotate the correct lateral sleeve requirement here.

3. Irrigation legend on sheet SD/L100 indicates schedule 40 pvc pipe for irrigation laterals, however, specification section 32 84 32, subsection 2.1 Piping materials, B. Fittings requires schedule 80 pvc for 3" and larger pipe. Please advise what will supersede where plans conflict with specification requirements.

Responses;

1. Provide one gallon (1) size container for all DIETES bicolor on planting plans.

- 2. Provide sleeves as indicated on plan. There are two sleeves required in the area of question. One 10" and one 3".
- Specifications require schedule 40 PVC lateral line pipe for all lateral lines. Sch 40 PVC solvent weld fittings are to be used on lateral pipes 2 1/2" and smaller. Sch 80 PVC solvent weld fittings are to be used on lateral pipes 3" on larger.

RFI No.: Bedards 001

To: Darden Architects, Inc.

6790 North West Avenue Fresno, California 93711 Date: 11/1/2021 Respond By:

Architect Project No. Project: MTHS Stadium

**INFORMATION REQUESTED:** 

Attn: Matt Heiss

Question #1:

Section 23 09 23 - Direct Digital Control And Energy Management System, Part 1 - General, 1.2 SCOPE, A., states, "All existing network controllers on District School sites shall have their software upgraded to the same revision as that installed at this site,"

Should the existing network controllers at other District School sites that cannot be upgraded to the same software revision as at this site, be replaced to operate at the same software version as at this site?

Question #2: Should the EMS control the Indoor/Outdoor Units? No control detail was provided.

Question #3: Should the EMS control the Package Air Conditioning Units? No control detail was provided.

Question #4: Should the EMS control the Evaporative Cooler Unit? No control detail was provided.

Question #5 Should the EMS control the Makeup Air Unit? No control detail was provided.

**RESPONSE:** 

Question 1 - See addenda 3 for clarification of controler software revision requirements

Questions 2-5

| See sequence of operation section 23 09 23   | 5, 3.2 A thru H. "                    |
|----------------------------------------------|---------------------------------------|
| Consultant's Signature:                      | Architect's Signature:                |
| Date:                                        | Date <u>11/4/2021</u>                 |
| Copy: Owner Inspector Testing Lab Structural | Mech. Elec File Other Pages Attached: |